
ADVANCES IN QUANTUM COMPUTATIONAL

LEARNING THEORY

Alp Atıcı

Submitted in partial fulfillment of the
requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2006

c© 2006

Alp Atıcı
All Rights Reserved

ABSTRACT

Advances in Quantum Computational Learning Theory

Alp Atıcı

This dissertation explores results at the intersection of two important branches of theoretical

computer science: quantum computation, which studies the power of computing devices based on

quantum physical phenomena, and computational learning theory, which studies the foundations

of machine learning algorithms. We refer to the area of research at this intersection as quantum

computational learning theory. Like its classical counterpart, quantum computational learning

theory aims to understand the computational and information theoretic requirements of learning

problems and algorithms. However unlike the classical models, the models for quantum learners

generally involve quantum sources of information and quantum gates employing quantum physical

phenomena such as superposition and entanglement, which do not have classical equivalents.

Our results can be summarized as follows:

• In Chapter 3, we study the information theoretic requirements of quantum exact learning, par-

tition learning and “Probably Approximately Correct” (PAC) learning. First, we develop a new

general quantum exact learning algorithm, resolving a conjecture by Hunziker et al. [HMP+03].

Next, we present positive and negative results towards the rather general problem of partition learn-

ing of which both “exact learning” and “computing a binary property” are special cases. Finally,

we derive an improved lower bound on the number of quantum examples required for PAC learn-

ing.

• In Chapter 4, we consider the problem of learning unions of high dimensional rectangles over

the domain [b]n using membership queries and uniform quantum examples. These classes are nat-

ural generalizations of classes of DNF formulae over {0, 1}n that have been extensively studied in

the learning theory literature.

• In Chapter 5, we develop quantum algorithms for learning and testing juntas (Boolean func-

tions that depend on a few variables) and learning sparse functions. These algorithms are based on

the quantum subroutine due to Bshouty and Jackson [BJ99] that enables sampling from the Fourier

spectrum.

Contents

List of Algorithms iii

1 Introduction 1
1.1 Motivation . 1
1.2 Outline and summary of the contributions . 3

2 Background 7
2.1 Quantum computation . 7
2.2 Computational learning theory . 17
2.3 Mathematical background . 19

3 Improved Bounds on Quantum Learning Algorithms 20
3.1 Introduction . 20

3.1.1 Motivation and background . 20
3.1.2 The results of this chapter . 21
3.1.3 Organization of this chapter . 23

3.2 Preliminaries . 23
3.2.1 Learning preliminaries . 23
3.2.2 Classical learning models . 24

3.3 Exact learning with quantum membership queries 25
3.3.1 Known bounds on query complexity for exact learning 25
3.3.2 A new quantum exact learning algorithm 27

3.4 Relations between query complexity of quantum and classical exact learning 32
3.5 On learning a partition of a concept class . 34

3.5.1 Partition problems for which quantum and classical complexity are poly-
nomially related . 35

3.5.2 A partition problem with a large quantum-classical gap 42
3.6 Quantum versus classical PAC learning . 44

3.6.1 The quantum PAC learning model . 44
3.6.2 Known results on quantum versus classical PAC learning 46
3.6.3 Improved lower bounds on quantum sample complexity of PAC Learning . 46

4 Learning Unions of ω(1)-Dimensional Rectangles 52
4.1 Introduction . 52

4.1.1 Motivation . 52
4.1.2 Previous results . 53
4.1.3 The techniques and results of this chapter 54

i

4.1.4 Organization of this chapter . 55
4.2 Preliminaries . 56

4.2.1 The learning model . 56
4.2.2 The functions we study . 57
4.2.3 Harmonic analysis of functions over [b]n 58
4.2.4 Additional tools: weak hypotheses and boosting 59

4.3 The Generalized Harmonic Sieve algorithm . 60
4.4 Learning MAJORITY of PARITY using GHS . 63

4.4.1 Setting the stage . 63
4.4.2 There exist highly correlated Fourier basis elements for functions in C un-

der smooth distributions . 64
4.4.3 The second approach . 68

4.5 Locating sensitive elements and learning with GHS on a restricted grid 69
4.6 Applications to learning unions of rectangles . 75

4.6.1 Learning majorities and unions of many low-dimensional rectangles 75
4.6.2 Learning unions of fewer rectangles of higher dimension 76
4.6.3 Learning majorities of unions of disjoint rectangles 77

4.7 Learning unions of rectangles using uniform quantum examples 77
4.7.1 Sampling from the Fourier spectrum of {−1, 1}-valued functions over [b]n

using uniform quantum examples . 78
4.7.2 Locating heavy Fourier indices of real valued functions over [b]n using

uniform quantum examples . 81

5 Quantum Algorithms for Testing and Learning Juntas 86
5.1 Introduction . 86

5.1.1 Motivation . 86
5.1.2 The results of this chapter . 87
5.1.3 Organization of this chapter . 88

5.2 Preliminaries . 89
5.2.1 The problems and the models . 89
5.2.2 Harmonic analysis of functions over {−1, 1}n 92
5.2.3 Additional tools . 93
5.2.4 The Fourier sampling oracle: FS . 93

5.3 Testing juntas . 94
5.3.1 A testing algorithm using O(k/ε) FS oracle calls 95
5.3.2 Lower bounds for the FS oracle based testing 96

5.4 Learning juntas . 104
5.4.1 Known results . 104
5.4.2 A new learning algorithm . 106

5.5 Learning polynomially sparse functions with a FS oracle and random examples . . 111
5.5.1 Known bounds on learning polynomially sparse functions 111
5.5.2 A new learning algorithm . 113

6 Conclusions 117

Bibliography 119

ii

List of Algorithms

1 Constructing a set of inputs which satisfies the semi-rich row condition. 28
2 A quantum exact learning algorithm. 30
3 A slightly modified version of Algorithm 1 to be used in generating a partition. . . 39
4 Constructing a partition for which RP(C) and QP(C) are polynomially related. . . 41
5 A classical algorithm learning P. 42
6 The Generalized Harmonic Sieve (GHS) algorithm. 60–62
7 Computing a refinement of the grid S with the desired properties. 71
8 An improved algorithm for learning MAJORITY of PARITY of basic b-literals. . . . 73
9 The GQSAMP algorithm. 79–80
10 The modified GHS algorithm using uniform quantum examples. 81–85
11 The junta testing algorithm. 95–96
12 The junta learning algorithm. 107
13 The polynomially sparse function learning algorithm. 115

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to acknowledge and thank people who have contributed to

the development of this thesis and shaped my life as a graduate student in Columbia.

First and foremost, I am deeply grateful to my advisor, Rocco A. Servedio. It has been a great

pleasure to work with him in this project. Rocco has always been very patient and generous with his

time. His enthusiasm and optimism have been an inspiration and his insights and advice invaluable.

His influence is very much present in every page of this dissertation.

I would like to thank Dave Bayer for his confidence and active support in the department,

without which this work never would have come to fruition. I thank Shou-Wu Zhang for his

advice during my early graduate years. I also thank the members of my defense committee: Lisa

Hellerstein, Ronnitt Rubinfeld, Dylan P. Thurston.

I thank my most wonderful friends who have made my years in Columbia so enjoyable and

memorable: Johan and Philip (for the brilliant conversations around nutella and tea), Matt and P. J.

(for all the senseless fun), John (for the milk shakes and the help for my future career), Yano and

Bart (for the out-of-the-box discussions), Eun-Jung and Jan-Willem (for inviting me as a special

guest to their home gatherings), Gülru (for her warm company and the artistic advice), and many

others including friends in Columbia: Jeff, Eric, Sonja, Keiko, Eli, Sharon, Özge & Sercan, Özgür

& Sinem as well as my high school and college friends studying in the States: Umut, Cantürk,

Barış & Zeynep, Anıl & Zeynep, Ayça, Mahir & Emek, Erhan, Devin and Mustafa.

Finally, I thank my family for their constant affection and support during this (in their eyes a

remarkable but a rather curious) endeavor including my aunts, my grandmother and my cousins

but especially my uncle and my mother to whom this thesis is dedicated.

iv

To my mother, Mine

v

Chapter 1

Introduction

1.1 Motivation

It is relatively recent in the history of computation when Richard P. Feynman first came to realize

[Fey82] that it is possible to build more efficient computing devices than the conventional Turing

machine by harnessing a deeper knowledge of physics giving rise to the field of quantum computa-

tion. The emerging field of quantum computation has elicited immense interest after the discovery

of Shor’s Algorithm [Sho94] both because its study could give rise to other breakthroughs in theory

of computation and also because the construction of a practical quantum computer has remained a

big challenge over the years.

On the other hand, since Valiant’s seminal paper “A Theory of the Learnable” [Val84], the

field of computational learning theory has evolved into a rich mathematical theory for the study of

machine learning algorithms (see e.g. [AB97, KV94, Vap98]). Although the methods and aims of

computational learning theory are abstract, techniques and insights from this field have had a great

impact on both positive and negative directions in applied machine learning research and real-

world learning systems. Many fertile connections have been established between computational

learning theory and other research areas in theoretical computer science such as complexity theory,

cryptography and computational geometry, to name a few.

The main motivation behind the research in this dissertation is to investigate and derive results

at the intersection of these two fields that have so far mostly remained disjoint. The theoretical

1

2

motivations arise most significantly from the fact that many natural questions in quantum com-

putational learning theory are closely related to well-studied problems in the theory of quantum

computation. Moreover the results in this field could improve our understanding of abilities and

limitations in classical learning algorithms. Such a study is also motivated from a practical view-

point since the development of efficient quantum learning algorithms may have a broad range of

potential applicability when quantum computers are realized.

As in the classical computational learning theory, the main factors considered by quantum

computational learning theory are computational and information theoretic requirements of learn-

ing problems and algorithms. However unlike the classical learning models, the models for quan-

tum learners generally permit quantum gates as basic steps of computation as well as oracles that

provide quantum information involving a superposition of concept values.

In this research, we investigate quantum computational learning theory primarily along the

following directions:

Exploring the intrinsic limitations of quantum learning algorithms: Information theoretic

lower bounds have been established in widely studied classical models of computational

learning theory such as the Probably Approximately Correct model, the model of exact learn-

ing from membership queries and the model of learning from membership and equivalence

queries. Many such lower bounds are known to be tight due to complementing algorithms

whose consumption match these bounds. Since these bounds apply to all possible learn-

ing algorithms, one has a good overall understanding of the limitations of algorithms in the

aforementioned classical models. However the techniques employed in establishing such

lower bounds do not extend to the quantum setting in most of the cases. In general, little was

known about possible quantum analogues of these bounds. We make considerable progress

towards improving existing lower bounds and establishing new ones particularly in Chapter 3

but also in Chapter 5.

Designing more efficient algorithms exploiting inherent capabilities of quantum models:

There are concrete examples of concept classes for which quantum algorithms are known to

be more efficient in learning and property testing. However for most well-studied concept

classes it is not known whether the standard quantum techniques (or possibly newer ones)

3

could be employed to give a reasonable improvement. One of the goals of this research is

to design explicit quantum algorithms whose time and information-theoretic efficiency come

close to or match the established quantum lower bounds. We present results in Chapters 3

and 5 towards this goal.

The design of new and more efficient algorithms is a constructive challenge and immedi-

ately contributes to our understanding of what is really possible within the quantum models.

Surprisingly some of these new quantum algorithms are known to perform better than all

classical algorithms since their consumption is below the established classical lower bounds.

Development of efficient algorithms towards learning more expressive concept classes: A

natural question is whether it is possible to develop computationally efficient quantum al-

gorithms towards learning more expressive concept classes for which no efficient classical

algorithm is known. In particular, Chapter 4 presents new classical and quantum results

along this direction for the problem of learning unions of high dimensional rectangles.

1.2 Outline and summary of the contributions

Background: In this chapter we present a description of quantum computation, a brief explana-

tion of computational learning theory and some further mathematical preliminaries.

Improved Bounds on Quantum Learning Algorithms: This chapter is based on the article

[AS05] which appeared in the Journal of Quantum Information Processing.

A major focus of study in quantum computation is the power of quantum algorithms to ex-

tract information from a “black-box” oracle for an unknown Boolean function. Many of the most

powerful ideas for both algorithmic results and lower bounds in quantum computing have emerged

from this framework, which has been studied for more than a decade (see e.g. [BBBV97, Gro96,

Sim97, BBC+01, SG04, AIK+04a, BJ99]).

In this chapter we give several new results on the complexity of algorithms that learn Boolean

functions from quantum queries and quantum examples, which are the most widely studied quan-

tum oracles.

4

• Hunziker et al. [HMP+03] conjectured that for any classC of Boolean functions, the number

of quantum black-box queries which are required to exactly identify an unknown function

from C is O(log |C|√
γ̂C

), where γ̂C is a combinatorial parameter of the class C.

We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that,

for any class C, identifies any unknown function from C using O(log |C| log log |C|√
γ̂C

) quantum

black-box queries.

• We consider a range of natural problems intermediate between the exact learning problem

(in which the learner must obtain all bits of information about the black-box function) and

the usual problem of computing a predicate (in which the learner must obtain only one bit of

information about the black-box function). We give positive and negative results on when the

quantum and classical query complexities of these intermediate problems are polynomially

related to each other.

• Finally, we improve the known lower bounds on the number of quantum examples (as op-

posed to quantum black-box queries) required for (ε, δ)-PAC learning any concept class of

Vapnik-Chervonenkis dimension d over the domain {0, 1}n from Ω(dn) to Ω(1
ε ln 1

δ+d+
√
d
ε).

This new lower bound comes closer to matching known upper bounds for classical PAC

learning.

These results address the information theoretic requirements of the listed problems.

Learning Unions of ω(1)-Dimensional Rectangles: This chapter is based on the article [AS06],

chosen as the recipient of the E. M. Gold award by the committee of the 17th International Confer-

ence on Algorithmic Learning Theory. It will appear in the journal Theoretical Computer Science

special issue ALT 2006.

The learnability of Boolean valued functions defined over the domain [b]n = {0, 1, . . . , b−1}n

has long elicited interest in computational learning theory literature. In particular, much research

has been done on learning various classes of “unions of rectangles” over [b]n (see e.g. [BK98,

CH96, CM94, GGM94, Jac97, MW98]), where a rectangle is a conjunction of properties of the

form “the value of attribute xi lies in the range [αi, βi]”. One motivation for studying these classes

5

is that they are a natural analogue of classes of DNF formulae over {0, 1}n.

In this chapter we consider the problem of learning unions of rectangles over the domain [b]n,

in the uniform distribution membership query learning setting, where both b and n are “large”. We

obtain poly(n, log b)-time algorithms for the following classes:

• poly(n log b)-MAJORITY of O(log(n log b)
log log(n log b))-dimensional rectangles.

• Union of poly(log(n log b)) O(log2(n log b)
(log log(n log b) log log log(n log b))2

)-dimensional rectangles.

• poly(n log b)-MAJORITY of poly(n log b)-OR of disjointO(log(n log b)
log log(n log b))-dimensional rect-

angles.

Our main algorithmic tool is an extension of Jackson’s boosting- and Fourier-based Harmonic

Sieve algorithm [Jac97] to the domain [b]n, building on work of Akavia et al. [AGS03]. Other

ingredients used to obtain the results stated above are techniques from exact learning [BK98] and

ideas from recent work on learning augmented AC0 circuits [JKS02] and on representing Boolean

functions as thresholds of parities [KS04].

Finally, we explore consequences of these results towards learning with quantum computation.

We translate the derived positive learnability results to the uniform dimensional quantum PAC

learning model, in which no access to classical or quantum membership queries is permitted.

Quantum Algorithms for Testing and Learning Juntas: In this chapter, we develop quantum

algorithms for learning and testing juntas and learning sparse functions.

Our objective is to develop efficient algorithms:

• whose query complexity has no dependence on n, the dimension of the domain the Boolean

functions are defined over.

• with no access to any classical or quantum membership queries.

• consuming only a few quantum examples but possibly many classical random examples

(which are considered relatively “cheap” compared with quantum examples).

We are primarily interested in the information theoretic requirements of the learning and testing

problems that we discuss.

6

Our quantum algorithms are based on the quantum subroutine FS which permits sampling

according to the Fourier spectrum due to Bshouty and Jackson [BJ99]. In particular our results can

be summarized as follows:

• A k-junta testing algorithm with O(k/ε) quantum examples.

• We establish the lower bound: Any FS based k-junta testing algorithm requires Ω(
√
k)

queries.

• A k-junta learning algorithm withO(ε−1k log k) quantum examples andO(log(1/ε)2k) ran-

dom examples.

• A learning algorithm for almost t-sparse functions using O(tε log t
ε) quantum examples.

Our learning algorithms come close to the best possible due to complementing lower bounds.

Conclusions: In this chapter we summarize our results and discuss promising directions for fu-

ture research arising from our work.

Chapter 2

Background

2.1 Quantum computation

Brief history and definition: Richard P. Feynman was the first to note that it is possible to build

more efficient computing devices than the conventional Turing machine by harnessing a deeper

knowledge of physics. He pointed out in 1982 [Fey82] that it appears to be extremely difficult by

using an ordinary computer to simulate efficiently how a quantum physical system evolves with

time. He also demonstrated that, if we had a computer that runs according to the laws of quantum

physics, then this simulation could be made efficiently. Thus he actually suggested that a quantum

computer could be essentially more efficient than any traditional one.

In 1985 in his notable paper [Deu85], Deutsch was the first to establish a solid ground for the

theory of quantum computation by introducing a fully quantum model for computation and giving

the description of a universal quantum computer. Later, Deutsch also defined quantum networks

in [Deu89]. The construction of a universal quantum Turing machine was improved by Bernstein

and Vazirani in [BV97], where the authors show how to construct a universal quantum Turing

machine capable of simulating any other quantum Turing machine with polynomial efficiency. But

it was after Peter W. Shor introduced his celebrated quantum algorithms for factoring integers and

extracting discrete logarithms in polynomial time [Sho94] that the field of quantum computation

has elicited immense interest.

A quantum computer is any device for computation that makes direct use of distinctively quan-

7

8

tum mechanical phenomena, such as superposition and entanglement, to perform operations on

data. In a classical (or conventional) computer, the basic unit of data is measured by bits; in a

quantum computer, it is measured by qubits. The basic principle of quantum computation is that

the quantum properties of particles can be used to represent and structure data, and that devised

quantum mechanisms can be used to perform operations with this data.

In this section we give a brief explanation of the fundamentals of quantum computation. For a

more detailed description of the quantum computational model, the reader is referred to textbooks

and survey articles such as [KSV02, NC00, BV97, Yao93].

Quantum bits and registers: A quantum bit, qubit for short, is the basic unit of quantum infor-

mation. It is a two dimensional quantum system equipped with fixed basic states: {|0〉, |1〉}, known

as the computational basis. Just as a classical bit has a state – either 0 or 1 – the state of a single

qubit is a vector

|ψ〉 = c0|0〉+ c1|1〉, where c0, c1 ∈ C and |c0|2 + |c1|2 = 1. (2.1.1)

The convention in the quantum computation literature of using “|·〉” to describe vectors is called

the Dirac notation. The complex numbers c0, c1 are called the amplitudes of the basis states |0〉

and |1〉 respectively. Therefore, in contrast to a classical bit whose state is a binary value, a qubit

can be in a linear combination of these basic states. Being in such a state of linear combination is

referred to as superposition. We will represent the state space of a qubit by H. Note that H is a

subset of the two dimensional complex vector space spanned by all combinations of |0〉 and |1〉.

A measurement or an observation of a qubit in state (2.1.1) will yield 0 or 1 as the outcome with

probabilities |c0|2 and |c1|2 respectively. And after a measurement the qubit will always produce

the same value in subsequent measurements. Therefore after the qubit is measured, it collapses

into the state |i〉 with probability |ci|2.

Example 2.1.1. When measured the first time, the state 3
5 |0〉 + 4

5
√

2
(1 − i)|1〉 produces the out-

come 0 or 1 with probabilities 9/25 and 16/25 respectively. After the measurement, the state of

the qubit becomes |i〉, where i is the outcome of the measurement. Consequently all subsequent

measurements yield the same outcome as the first.

9

A general finite quantum system can consist of an arbitrarily large (but finite) number of qubits.

Sometimes these qubits are called the quantum registers of the system. The state of an n-qubit

quantum system is a vector

|ψ〉 =
∑

(x1,...,xn)∈Fn
2

cx1,...,xn |x1, . . . , xn〉, where cx1,...,xn ∈ C and
∑

(x1,...,xn)∈Fn
2

|cx1,...,xn |2 = 1.

(2.1.2)

Therefore the state space for such a system is a subset of the complex vector space of dimension

2n with the basis

{|x1, . . . , xn〉 : (x1, x2, . . . , xn) ∈ Fn2}.

This basis is called the computational basis of the quantum system and each cx1,...,xn the amplitude

of the corresponding basis state |x1, . . . , xn〉. Consequently, one of the fundamental differences

between a classical and a quantum computer is that the state of a quantum computer at a given

moment can be in a superposition of the basic states, i.e. the elements of the computational basis.

Similarly, a measurement of the quantum system in state |ψ〉 will yield (x1, . . . , xn) with prob-

ability |cx1,...,xn |2. Observe that the measurement probabilities depend on the choice of the com-

putational basis. If a different orthonormal basis for C2n
were set as the new computational basis,

a new set of probabilities would be obtained for the same state |ψ〉.

The state space of an n qubit quantum system can be expressed as the following tensor product

over C:

H⊗H⊗ . . .⊗H︸ ︷︷ ︸
n times

=
n⊗
i=1

H.

Recall that a k-dimensional complex vector space has the inner product and induced norm

defined by:

for v = (v1, . . . , vk), w = (w1, . . . , wk) ∈ Ck, 〈v, w〉 =
∑
i

viwi, ‖v‖ =
√
〈v, v〉.

This induces an inner product on the state space of n qubit quantum system
⊗n

i=1H as follows:

if |ψ〉, |φ〉 ∈
n⊗
i=1

H,where |ψ〉 =
∑
x∈Fn

2

cx|x〉, |φ〉 =
∑
x∈Fn

2

dx|x〉 then 〈ψ|φ〉 =
∑
x∈Fn

2

cxdx.

10

Note that by convention this inner product is expressed as 〈ψ|φ〉 instead of 〈ψ, φ〉.

Compound quantum systems and entanglement: Indeed, if two quantum systems of n and

m qubits with states |ψ〉 and |ξ〉 are consolidated into a single system of n + m qubits the final

state of the new system will be |ψ〉 ⊗ |ξ〉 (for notational simplicity the tensor product is sometimes

dropped and the state of this system is expressed as |ψ〉|ξ〉). However not every state of an n+m

qubit quantum system can be expressed as such a tensor product. In other words, an n +m qubit

quantum system can be in a state |φ〉 such that

there exists no |ψ〉 ∈ H⊗n, |ξ〉 ∈ H⊗m, for which |φ〉 = |ψ〉 ⊗ |ξ〉.

In this case the first n and the last m qubits, considered as separate quantum systems, are said to

be entangled rather than independent. This phenomenon called entanglement is quite important in

quantum information processing.

Example 2.1.2. The simplest yet arguably the most consequential example is the two qubit state

called the Bell state or EPR pair,
|00〉+ |11〉√

2
.

It is easily proved by contradiction that there are no one qubit states |ψ〉, |ξ〉 whose tensor product

is the Bell state. Thus the first and the second qubits are entangled.

Generalized measurements: According to the projection postulate, given an n-qubit quantum

system |ψ〉 =
∑
x∈Fn

2

cx|x〉, the state of the system after observation is |i〉 with probability |ci|2. In

other words the system is said to collapse into the state |i〉 with probability |ci|2. However more

generally a partial measurement / observation of qubits is possible. Suppose we have a compound

system of n+m qubits in state |ψ〉 =
∑
x∈Fn

2

∑
y∈Fm

2

αx,y|x〉|y〉 and the first n-qubit system is observed

in the state |i〉. Then the projection postulate implies that the post-observation state of the whole

system is:
1√

Pr(i)

∑
y∈Fm

2

αi,y|i〉|y〉,where Pr(i) =
∑
y∈Fm

2

|αi,y|2.

11

The fact that gives the projection postulate its name is that associated to any measurement in

the computational basis, there exists a collection of linear projections {Pi : P 2
i = Pi} (where the

index i refers to the measurement outcomes) satisfying the following properties:

• The probability that result i is observed is Pr(i) = 〈ψ|Pi|ψ〉,

• If result i is observed, the state of the system after the measurement is Pi|ψ〉√
〈ψ|Pi|ψ〉

.

• The linear projections satisfy the completeness equation:
∑

i Pi = I .

Above, 〈ψ|Pi|ψ〉 denotes the inner product of the states |ψ〉 and Pi|ψ〉.

Example 2.1.3. For the earlier example of measuring the first n qubits of the compound system of

n+m qubits we have the following set of projections satisfying the above properties:

Pi :
∑
x∈Fn

2

∑
y∈Fm

2

αx,y|x〉|y〉 7→
∑
y∈Fm

2

αi,y|i〉|y〉.

In other words, during a measurement in the computational basis, the state of the system is pro-

jected to the subspace that corresponds to the observed state, and renormalized to the unit length.

In light of the projection postulate we can give an example to how entanglement can give rise

to surprising facts. Given two entangled quantum systems no matter how distant from each other,

an operation on one system would affect the other.

Example 2.1.4. Consider measuring the first qubit of the Bell state |00〉+|11〉√
2

. By the projection

postulate, if this measurement is 0 then the post-observation state of the system is |00〉 and if it is 1

then the post-observation state of the system is |11〉. Therefore if the first qubit of the Bell state is

measured then the second qubit will collapse to the same value as the first no matter how physically

distant the particles associated to these qubits could be.

Quantum gates: We have yet to describe the transformations of a quantum computer which cor-

respond to the basic computational steps. Just as a classical computer is composed of Boolean

gates, a quantum computer is composed of quantum gates acting on bounded number of qubits. As

unitary operators describe the evolution of quantum systems, quantum gates are themselves uni-

tary transformations, i.e. linear maps U over a finite dimensional complex vector space satisfying

12

U †U = I where U † denotes the conjugate transpose of U . Recall that unitary transformations pre-

serve the inner product over Ck. Therefore a quantum gate applied to an n-qubit system preserves

the length
∑
x∈Fn

2

|cx|2 of any vector
∑
x∈Fn

2

cx|x〉. One can easily verify that composition of unitary

transformations is also unitary.

Since these transformations are linear, it’s sufficient to describe their action on some basis of

the state space. We will usually provide the action over the computational basis states to uniquely

identify the quantum gate.

Example 2.1.5. The prototypical multi-qubit quantum gate is the controlled-NOT or CNOT gate.

This gate acts on two qubits: the control qubit and the target qubit. The action of this gate is

defined as follows: If the control qubit is set to 0 then the target qubit’s value is unaltered; but if

the control qubit is set to 1 then the target qubit is flipped. In equations this corresponds to the

following action on the computational basis states:

CNOT : |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉, |11〉 7→ |10〉.

In a classical computer In a quantum computer
The gates are functions The gates are unitary operators U over C2n

, n = O(1)
Fn2 → Fm2 where n,m = O(1). preserving the length

∑
x∈Fn

2

|cx|2 of any vector
∑
x∈Fn

2

cx|x〉.

Table 2.1: A comparison of the gates between a classical computer and a quantum computer.

Sometimes we will talk about a unitary transformation U over C2m
to be applied to a subset

of qubits S, |S| = m of a larger quantum system. This means we are applying to the quantum

system the unitary transformation US ⊗ ISc , which is the tensor product of linear transformations:

U applied to the qubits in S and identity I to the rest of the qubits. It is straightforward to check

that tensor products of unitary maps is unitary.

Example 2.1.6. Suppose we have a 3 qubit quantum register and we apply the CNOT gate of

Example 2.1.5 to the first and third qubits. Consequently the unitary transformation acting on the

quantum register will be: CNOT[1,3] ⊗ I[2]. This has the following action on the computational

13

basis states:

CNOT[1,3] ⊗ I[2] :|000〉 7→ |000〉, |001〉 7→ |001〉, |100〉 7→ |101〉, |101〉 7→ |100〉,

|010〉 7→ |010〉, |011〉 7→ |011〉, |110〉 7→ |111〉, |111〉 7→ |110〉.

We emphasize that the state evolution during a measurement, as described by the projection

postulate, is not consistent with the unitary time evolution. This is because a unitary evolution

described by a unitary transformation U is always reversible via U−1, while there is no way to

recover the original state after measurement (see for instance Example 2.1.4).

Summary of the quantum circuit model: The circuit model of quantum computation assumes

that one has the ability to prepare states in the computational basis, perform quantum gates and

perform measurements in the computational basis.

Moreover, the principle of deferred measurement [NC00, pp. 186] implies that given any quan-

tum algorithm composed of a sequence of quantum gates and measurements, it is possible to re-

express this algorithm in such a way that there is only one measurement after some sequence of

quantum gates. Equivalently, this fact is sometimes stated as “measurements can be delayed until

the very end”. Therefore w.l.o.g. we will always assume in our algorithms that the measurement is

performed at the end.

Hence during any quantum algorithm, the information processing is carried out according to

the following scheme:

1. The system is first prepared in an initial basis state.

2. Next, the quantum gates are applied.

3. Finally, the system is observed in the computational basis to determine the outcome.

Also, whenever the ultimate result of a quantum algorithm is known to be binary valued, i.e. either

TRUE or FALSE, we will assume without loss of generality that measuring the last qubit of the

system will produce the result of the algorithm. This is because all post-measurement computation

steps could be moved before the measurement as we discussed. In other words if the state of the

14

quantum system after all quantum gates are applied is |ψ〉, the probabilities that TRUE or FALSE

will be returned by the algorithm after measurement is 〈ψ|P1|ψ〉 and 〈ψ|P0|ψ〉 respectively where

P0, P1 are the projection operators associated to measuring the final qubit in 0 or 1.

On the quantum computational complexity of functions: In order to explain the quantum

computational complexity of functions we adopt the following definition for a quantum algorithm.

Definition 2.1.7. Let F : F∗2 → F∗2 be the function we are interested in computing. Consider its

decomposition into a collection of functions based on the length of the input: Fn : Fn2 → Fm(n)
2 .

• A quantum algorithm computing a function F is a classical algorithm described by a Turing

machine T that computes a function of the form n 7→ Z(n), where Z(n) is a description of

a quantum circuit which computes Fn at each input x ∈ Fn2 (i.e. when the quantum circuit

Z(n) is invoked over the initial state |x〉|0 . . . 0〉) with high probability.

• We say that quantum algorithm computes F in time T (n) if building the circuit takes at most

T (n) steps. The size of the circuit is obviously not greater than T (n).

• Provided there exists such a Turing machine T , such a collection of circuits Z(n) is said to

be uniformly generated in time T (n).

• The computational complexity of F is defined as T ′(n), if there is a quantum algorithm

computing F in time T ′(n) and there is no quantum algorithm computing F in T ′′(n) where

T ′′(n) < T ′(n) for some n ≥ 1. The function F is said to belong to the class BQP if its

computational complexity is poly(n).

Note that this definition is essentially the same as the classical complexity – the only difference

is that the description the Turing machine produces involves a quantum circuit instead of a classical

circuit. A subtle technical point we have not explained is how the quantum circuits will be described

by the Turing machine. It turns out that just as there exists a finite set of Boolean gates constituting

a complete basis in terms of which the classical circuits are described, the quantum circuits can be

described in terms of a finite set of quantum gates called the standard basis up to arbitrarily small

accuracy. The reader is referred to [Kit97, DN05], [KSV02, Theorem 8.3], [NC00, Appendix 3]

for a detailed treatise on the Solovay-Kitaev Theorem elaborating this result.

15

Theorem 2.1.8 (See [DN05]). Any quantum gate U acting on a bounded number of qubits can be

realized with accuracy δ (under the operator norm) by a sequence of poly(log δ−1) quantum gates

from the standard basis. There is an poly(log δ−1) time classical algorithm compiling this circuit

on the description of U .

Therefore given a quantum circuit of size T where each quantum gate acts on O(1) qubits, one

can invoke the above theorem with accuracy δ/T on each quantum gate to obtain a description of

the quantum circuit with accuracy δ purely in terms of the gates in the standard basis.

Naturally, we expect a quantum computer to be at least as efficient as a classical computer

for our efforts to be meaningful. Now we explain how any classical algorithm can be efficiently

simulated by a quantum algorithm.

The following fact will be the key idea towards simulating classical gates by quantum gates.

Remark 2.1.9. Any classical gate computing a permutation τ can be realized by a quantum gate

mapping |x〉 7→ |τ(x)〉, x ∈ Fk2 (note this map is unitary as τ is a permutation) followed by a

measurement in the computational basis. In other words, every reversible classical gate has an

equivalent quantum gate.

The following lemma shows that given any classical circuit over a finite basis of gates with

bounded fan-in and fan-out, one can efficiently compute an equivalent circuit consisting only of

permutations.

Lemma 2.1.10 (See [KSV02, Section 7]). Let a function F : Fn2 → Fm2 be realized by a classical

circuit of size L and depth d over some basis of gates G (the fan-in and fan-out being bounded by

a constant). Then there is a classical algorithm running in time O(L + n + m) and producing a

reversible classical circuit consisting only of permutations and computing the permutation:

F⊕ : Fn+m
2 → Fn+m

2 , mapping (x, y) 7→ (x, y ⊕ F (x))

(where ⊕ denotes bitwise addition modulo 2) with size O(L+ n+m) and depth O(d).

The new circuit could be fed with (x, 0) to obtain (x, F (x)) and consequently F (x).

Suppose we are given a classical algorithm, or equivalently a uniformly generated collection of

classical circuitsC(n) (expressed in terms of a finite basis of gates with bounded fan-in and fan-out)

16

by a Turing machine T1. Then using the above lemma, given the circuit description for each C(n)

produced by T1, there is another Turing machine T2 efficiently computing an equivalent circuit

D(n) consisting only of permutations. Hence, replacing each of these permutations with equivalent

quantum gates (as described by Remark 2.1.9) gives rise to a uniformly generated collection of

quantum circuits and consequently a quantum algorithm.

Quantum algorithms with queries: In our discussion we will restrict our attention to query

based quantum algorithms, in which information about the input is extracted through queries to a

quantum oracle. Sometimes an oracle is referred to as a black-box throughout our discussion.

A quantum circuit (or network) with queries is a sequence of unitary transformations each of

which is either a quantum gate or an oracle query. Each oracle query is a unitary transformation

whose action is a function of the input to the circuit, whereas the quantum gates in the circuit are

constant in the sense that they do not depend on the input function. Also each quantum gate in the

circuit acts on O(1) qubits by the definition of a quantum gate, which is not necessarily true for

the oracle queries. Consequently, Theorem 2.1.8 implies all quantum gates in such a circuit can be

approximated to arbitrary accuracy and replaced by quantum gates from the standard basis, which

is a finite set.

Because the information about the input (which will be a Boolean valued function f in our

problems) to a quantum circuit with queries is extracted through the queries, the initial state of

the system is assumed to be constant. Therefore as presented in [BBC+01], we will assume our

quantum system is initially prepared in the state |0N 〉. This is in contrast to ordinary quantum

circuits without oracles where the initial state contains the input to the circuit and the circuit consists

of constant unitary transformations.

Example 2.1.11. The quantum membership oracle QMQ associated to a function f : {0, 1}n →

{0, 1} is defined as follows. Each query to this oracle is a unitary transformation QMQ(f) acting

on a quantum system of n+ 1 qubits:

QMQ(f) : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉, where x ∈ Fn2 , y ∈ F2.

Clearly the action of this unitary transformation is a function of f .

17

Definition 2.1.12. A quantum algorithm with queries is a classical algorithm uniformly generating

a collection of quantum circuits Z(n) with queries each of which

• consists of quantum gates from the standard basis and queries which are unitary transforma-

tions that are functions of f : Fn2 → F2;

• is assumed to start in the state |0N(n)〉.

We say that the quantum algorithm with queries runs in time T (n) using Q(n) queries if building

the circuit Z(n) takes at most T (n) steps and Q(n) is the number of queries in the circuit.

Example 2.1.13. Grover’s Algorithm [Gro96] is a quantum algorithm with membership queries (as

defined in Example 2.1.11) where each Z(n) is a quantum circuit

• using O(2n/2) membership queries QMQ(f) where f : Fn2 → F2;

• and for any f that is not the identically 0 function, the outcome of the circuit Z(n) is w.h.p.

some x ∈ Fn2 for which f(x) = 1.

2.2 Computational learning theory

Computational learning theory is a mathematical field devoted to studying the design and analysis

of algorithms for making predictions about the future based on past experiences. It can also be

understood as an attempt to to adapt ideas from complexity theory and analysis of algorithms to

develop more concrete and detailed models of learning phenomena.

Since Valiant’s seminal paper “A Theory of the Learnable” [Val84] two decades ago, the field

of computational learning theory has has matured dramatically, growing in mathematical depth and

finding its natural connections to many other disciplines including statistics and cryptography. The

models and algorithms of the field have had widespread impact on the practice of machine learning.

The potential areas of application of insights and methods from learning theory are very diverse,

including such fields as natural language processing, DNA analysis, expert systems, robotics, data

mining, user interfaces, software agents, and cognitive science.

18

Only a brief overview is provided in this section. For further information the reader is encour-

aged to refer to the textbooks and the survey articles in the field such as [KV94, AB97, Gol99,

Vap98] and consult the references therein.

The primary question studied in computational learning theory is identifying or approximating

an unknown target function based on its input-output behavior. Most of the literature involves

Boolean valued functions c : X 7→ {TRUE, FALSE} where X is the input domain of possible

instances and c(x) is the label at instance x. Such Boolean valued functions are referred to as

concepts.

Associated to every learning problem is a concept class, the set of all possible target functions

the learning algorithm may be expected to learn: C = ∪n≥1Cn whereCn consists of those concepts

in C whose domain is {0, 1}n. Therefore it is implicit that a learning algorithm for C “knows” the

class C but does not know the identity of the target concept c ∈ C.

The learning model defines how the learning algorithm is allowed to obtain information about

the target concept. In the classical case the learning algorithm generally has access to an oracle

which provides examples 〈x, c(x)〉 that are labeled according to a fixed but unknown target con-

cept c ∈ C. For quantum learners the oracle usually provides quantum information involving a

superposition of such examples. As we discuss in later chapters, several different specific instanti-

ations of these oracles have been considered in both the classical and quantum settings.

The most important parameters of a learning algorithm are its sample or query complexity (how

many oracle calls the algorithm requires for successful learning) and its computational complexity

(the number of basic computation steps the algorithm consumes). Therefore most of the research

in computational learning theory literature address the asymptotic requirements for learning the

concept class Cn as n is allowed to grow. For ease of notation throughout this dissertation we will

omit the subscript in Cn and simply write C to denote a collection of concepts over {0, 1}n.

In Chapters 3 and 5, the query complexity of learning algorithms will be our main concern,

whereas in Chapter 4 we are interested in the computational complexity. In the preliminaries

section of each of those chapters, detailed information will be provided about the precise learning

models and problems involved in the corresponding chapter.

19

2.3 Mathematical background

In this section we provide basic mathematical tools and conventions that are common to all chapters

of the dissertation. Other relevant tools like Fourier analysis and Boosting will be introduced in the

subsequent chapters as needed.

The following well-known bounds show an exponential fall-off of probability with distance

from the mean for a sum of many independent random variables.

Fact 2.3.1 (Chernoff, 1952). Let X1, . . . , Xm be independent {0, 1}-valued random variables

which satisfy E[Xi = 1] = pi and 0 < pi < 1 for all i. Let µ =
∑m

i=1 pi. Then for all

0 < λ < 1 we have

Pr[
m∑
i=1

Xi ≤ (1− λ)µ] ≤ exp(
−λ2µ

2
) and Pr[

m∑
i=1

Xi ≥ (1 + λ)µ] ≤ exp(
−λ2µ

3
).

Fact 2.3.2 (Hoeffding, 1963). Let X1, . . . , Xm be independent random variables taking values in

the range [a, b]. Let X = 1
m

∑m
i=1Xi. Then for all λ > 0 we have

Pr[X ≥ E[X] + λ] ≤ exp(
−2λ2m

(b− a)2
) and Pr[X ≤ E[X]− λ] ≤ exp(

−2λ2m

(b− a)2
).

Observe that in the Chernoff Bound the deviation is measured multiplicatively, whereas in the

Hoeffding Bound it is measured additively.

We also use the following elementary fact.

Fact 2.3.3 (Markov’s Inequality). For any random variable X : Ω→ R+ ∪ {0},

Pr[X ≥ λ] ≤ E[X]/λ.

As a convention, log denotes logarithm base 2, ln denotes the natural logarithm. For real-

valued functions f and g, we write f(n) = Õ(g(n)) if there is a fixed constant c such that f(n) =

O(g(n) logc n). Given two binary strings, ⊕ denotes bitwise addition modulo 2. For z ∈ R, sgn

is the function such that sgn(z) = 1 if z ≥ 0, sgn(z) = −1 if z < 0. For a complex number

z = a+ bi ∈ C, z denotes its conjugate a− bi and |z| denotes its absolute value
√
a2 + b2.

Chapter 3

Improved Bounds on Quantum

Learning Algorithms

This chapter is based on the article [AS05] which appeared in the Journal of Quantum Information

Processing.

3.1 Introduction

3.1.1 Motivation and background

A major focus of study in quantum computation is the power of quantum algorithms to extract in-

formation from a “black-box” oracle for an unknown Boolean function. Many of the most powerful

ideas for both algorithmic results and lower bounds in quantum computing have emerged from this

framework, which has been studied for more than a decade.

The most frequently considered problem in this setting is to determine whether or not the

black-box oracle (which is typically assumed to belong to some particular a priori fixed class C of

possible functions) has some specific property, such as being identically 0 [BBBV97, Gro96], being

exactly balanced between outputs 0 and 1 [DJ92], or being invariant under an XOR mask [Sim97].

However, as described below researchers have also studied several other problems in which the

goal is to obtain more than just one bit of information about the target black-box function:

Quantum exact learning from membership queries: In [SG04] Servedio and Gortler initiated a

20

21

systematic study of the quantum black-box query complexity required to exactly learn any

unknown function c from a classC of Boolean functions. This is a natural quantum analogue

of the standard classical model of exact learning from membership queries which was intro-

duced in computational learning theory by Angluin [Ang88]. This quantum exact learning

model was also studied by Hunziker et al. [HMP+03] and by Ambainis et al. [AIK+04a],

who gave a general upper bound on the quantum query complexity of learning any class C.

PAC learning from quantum examples: In another line of related research, Bshouty and Jackson

[BJ99] introduced a natural quantum analogue of Valiant’s well-known Probably Approxi-

mately Correct (PAC) model of Boolean function learning [Val84] which is widely studied

in computational learning theory. [SG04] subsequently gave a Ω(d/n) lower bound on the

number of quantum examples required for any PAC learning algorithm for any class C of

Boolean functions over {0, 1}n which has Vapnik-Chervonenkis dimension d.

3.1.2 The results of this chapter

In this chapter we study three natural problems of quantum learning:

• exact learning from quantum membership queries as described above;

• learning a partition of a class of functions from quantum membership queries (this is an inter-

mediate problem between the quantum exact learning problem and the well-studied problem

of obtaining a single bit of information about the target function), and

• quantum PAC learning as described above.

For each of these problems we give new bounds on the number of quantum queries or examples

that are required for learning.

For the quantum exact learning model, Hunziker et al. [HMP+03] conjectured that for any class

C of Boolean functions, the number of quantum black-box queries that are required to exactly learn

an unknown function from C is O(log |C|√
γ̂C

), where γ̂C (defined in Section 3.3.1) is a combinatorial

parameter of the class C. We give a new quantum exact learning algorithm based on a multi-

target Grover search on a prescribed subset of the inputs, and show that the query complexity

22

for this algorithm is O(log |C| log log |C|√
γ̂C

); this resolves the conjecture of Hunziker et al. [HMP+03]

up to a log log |C| factor. Our new bound is incomparable with the upper bound of Ambainis et

al. [AIK+04a], but as we show it improves on this bound for a wide range of parameter settings.

We also show that for every class C of Boolean functions, the query complexity of our generic

algorithm is guaranteed to be at most a (roughly) quadratic factor worse than the query complexity

of the best quantum algorithm for learning C (which may be tailored for the specific class C).

For our second problem, we study a more general problem which is intermediate between

learning the black-box function exactly and computing a single Boolean predicate of the unknown

black-box function. This problem is the following: given a partition of a class C into disjoint

subsets P1, . . . , Pk, determine which piece the unknown black-box function c ∈ C belongs to.

Ambainis et al. proposed the study of this problem as an interesting direction for future work

in [AIK+04a]. Note that the problem of computing a single Boolean predicate of an unknown

function c ∈ C corresponds to having a two-way partition, whereas the problem of exact learning

corresponds to a partition of C into |C| disjoint pieces.

We show that for any concept class C and any partition size 2 ≤ k ≤ |C|, there is a partition of

C into k pieces such that the classical and quantum query complexities are polynomially related.

On the other hand, we also show that for a wide range of partition sizes k it is possible for the

quantum and classical query complexities of learning a k-way partition to have a superpolynomial

separation. These results show that the structure of the partition plays a more important role than

the size in determining the relationship between quantum and classical complexity of learning.

Finally, for the quantum PAC learning model, we improve the Ω(dn) lower bound of [SG04] on

the number of quantum examples which are required to PAC learn any concept class of Vapnik-

Chervonenkis dimension d over {0, 1}n. Our new bound of Ω(1
ε log 1

δ +d+
√
d
ε) is not far from the

known lower bound of Ehrenfeucht et al. [EHKV89] of Ω(1
ε log 1

δ + d
ε) for classical PAC learning.

Since the lower bound of [EHKV89] is known to be nearly optimal for classical PAC learning

algorithms (an upper bound of O(1
ε log 1

δ + d
ε log 1

ε) was given by [BEHW89]), our new quantum

lower bound is not far from being the best possible.

23

3.1.3 Organization of this chapter

Section 3.3 gives our new quantum algorithm for exactly learning a black-box function. Section 3.4

gives some simple examples and poses a question about the relation between query complexity

of quantum and classical exact learning. Section 3.5 gives our results on the partition learning

problem, and Section 3.6 gives our new lower bound on the sample complexity of quantum PAC

learning.

3.2 Preliminaries

3.2.1 Learning preliminaries

In this chapter, a concept c over {0, 1}n is a Boolean function c : {0, 1}n → {0, 1}. Equivalently

we may view a concept as a subset of {0, 1}n defined by {x ∈ {0, 1}n : c(x) = 1}. A concept

class C = ∪n≥1Cn is a set of concepts where Cn consists of those concepts in C whose domain is

{0, 1}n. For ease of notation throughout the chapter we will omit the subscript in Cn and simply

write C to denote a collection of concepts over {0, 1}n. It will often be useful to think of C as a

|C| × 2n-binary matrix where rows correspond to concepts c ∈ C, columns correspond to inputs

x ∈ {0, 1}n, and the (i, j) entry of the matrix is the value of the i-th concept on the j-th input.

We say that a concept class C is 1-sensitive if it has the property that for each input x, at least

half of all concepts c ∈ C have c(x) = 0 (i.e. each column of the matrix C is at most half ones).

Given any C it is possible to convert it to an equivalent 1-sensitive concept class by flipping the

value obtained from any input x which has |{c : c(x) = 1}| > |{c : c(x) = 0}|. This condition

on x can simply be checked by enumerating all concepts c in C – without making any queries. In

general, we refer to the process of flipping the matrix entries which reside in a particular subset

of columns as performing a column flip. This notion of 1-sensitivity and a column flip was first

introduced by [AIK+04a].

It is important to note that achieving the effect of a column flip in our algorithms involves

creating and using simulated oracles. In other words, a column flip affects not only the matrix

corresponding to the set of candidate concepts C but also the result of classical and quantum mem-

bership queries. Therefore, after a column flip on the subset of inputs K, a membership query

24

access to the target oracle at one of the inputs in K should be considered to be inverted before

returned to the algorithm. As remarked in [AIK+04a], in both the classical and quantum learning

models this can be achieved via some additional circuitry which is not significant for our purposes,

since we are only interested in the query complexity.

3.2.2 Classical learning models

The model of exact learning from membership queries was introduced by Angluin [Ang88] classi-

cally and has since been studied by several authors [BCG+96, Gav94, Heg95, HPRW96]. In this

framework, a learning algorithm for C is given query access to a black-box oracle MQ(c) for the

unknown target concept c ∈ C, i.e. when the learner provides x ∈ {0, 1}n to MQ(c) she receives

back the value c(x). A learning algorithm is said to be an exact learning algorithm for concept

class C if the following holds: for any c ∈ C, with probability at least 2/3 the learning algorithm

outputs a Boolean circuit h which is logically equivalent to c. (We remind the reader that a learning

algorithm for C “knows” the class C but does not know the identity of the target concept c ∈ C.)

The query complexity of a learning algorithm is the number of queries that it makes to MQ(c) be-

fore outputting h. We will be chiefly concerned in this chapter with a quantum version of the exact

learning model, which we describe in Section 3.3.

In the classical PAC (Probably Approximately Correct) learning model, which was introduced

by Valiant [Val84] and subsequently studied by many authors, the learning algorithm has access

to a random example oracle EX(c,D) where c ∈ C is the unknown target concept and D is an

unknown probability distribution over {0, 1}n. At each invocation the oracle EX(c,D) (which takes

no inputs) outputs a labeled example 〈x, c(x)〉 where x ∈ {0, 1}n is drawn from the distribution

D. An algorithm A is a PAC learning algorithm for concept class C if the following condition

holds: given any ε, δ > 0, for all c ∈ C and all distributions D over {0, 1}n, if A is given ε, δ

and is given access to EX(c,D) then with probability at least 1 − δ the output of A is a Boolean

circuit h : {0, 1}n → {0, 1} (called a hypothesis) which satisfies Prx∈D[h(x) 6= c(x)] ≤ ε. The

(classical) sample complexity of A is the maximum number of calls to EX(c,D) which it makes

for any c ∈ C and any distribution D. In Section 3.6 we will study a quantum version of the PAC

learning model.

25

3.3 Exact learning with quantum membership queries

Given any concept c : {0, 1}n → {0, 1}, the quantum membership oracle associated to c QMQ(c)

is the quantum oracle whose query acts on the computational basis states as |x, b〉 7→ |x, b⊕ c(x)〉

where x ∈ {0, 1}n and b ∈ {0, 1}. Recall that we mentioned this oracle earlier in Example 2.1.11.

A quantum exact learning algorithm for a concept class C is a sequence of unitary transforma-

tions U0,QMQ(c), U1,QMQ(c), . . . ,QMQ(c), UT where each Ui is a fixed unitary transformation

without any dependence on c. The algorithm must satisfy the following property: for any target

concept c ∈ C which is used to instantiate the QMQ queries, a measurement performed on the

final state will with probability at least 2/3 yield a representation of a (classical) Boolean circuit

h : {0, 1}n → {0, 1} such that h(x) = c(x) for all x ∈ {0, 1}n. The quantum query complexity of

the algorithm is T, the number of queries to QMQ(c).

Note that a quantum membership oracle QMQ(c) is identical to the notion of “a quantum black-

box oracle for c” which has been widely studied in e.g. [BBC+01, FGGS98, Gro96] and many

other works. Most of this work, however, focuses on the quantum query complexity of computing

a single bit of information about the unknown oracle, e.g. the OR of all its output values [Gro96]

or the parity of all its output values [FGGS98]. The quantum exact learning problem which we

consider in this section was proposed in [SG04] and later studied in [AIK+04a] (where it is called

the “oracle identification problem”) and in [HMP+03].

Throughout the chapter we write R(C) to denote the minimum query complexity of any clas-

sical (randomized) exact learning algorithm for concept class C. We write Q(C) to denote the

minimum query complexity of any quantum exact learning algorithm for C. We write N to denote

2n, the number of elements in the domain of each c ∈ C.

In Section 3.3.1 we briefly recap known bounds on the query complexity of quantum and

classical exact learning algorithms. In Section 3.3.2 we give our new quantum learning algorithm,

prove correctness, and analyze its query complexity.

3.3.1 Known bounds on query complexity for exact learning

We begin by defining a combinatorial parameter γ̂C of a concept class C which plays an important

role in bounds on query complexity of exact learning algorithms.

26

Definition 3.3.1. Let C be a concept class over {0, 1}n. We define

γC
′

a = min
b∈{0,1}

|{c ∈ C ′ : c(a) = b}|/|C ′|, where a ∈ {0, 1}n, C ′ ⊆ C

γC
′
= max

a∈{0,1}n
γC

′
a , where C ′ ⊆ C

γ̂C = min
C′⊆C,|C′|≥2

γC
′
.

If C ′ ⊆ C is the set of possible remaining target concepts, then γC
′

is the maximum fraction

of C ′ which a (classical) learning algorithm can be sure of eliminating with a single query. Thus,

intuitively, the smaller γ̂C is the more membership queries should be required to learn C.

The following lower and upper bounds on the query complexity of classical exact learning were

established in [BCG+96]:

Theorem 3.3.2. For any concept class C we have R(C) = Ω(1
γ̂C) and R(C) = Ω(log |C|).

Theorem 3.3.3. There is a classical exact learning algorithm which learns any concept class C

using O(log |C|
γ̂C) many queries, so consequently R(C) = O(log |C|

γ̂C).

A quantum analogue of this classical lower bound was obtained in [SG04]:

Theorem 3.3.4. For any concept class C over {0, 1}n we have Q(C) = Ω(1√
γ̂C

) and Q(C) =

Ω(log |C|
n).

Given these results it is natural to seek a quantum analogue of the classical O(log |C|
γ̂C) upper

bound. Hunziker et al. [HMP+03] made the following conjecture:

Conjecture 3.3.5. There is a quantum exact learning algorithm which learns any concept class C

using O(log |C|√
γ̂C

) quantum membership queries.

In Section 3.3.2 we prove this conjecture up to a log log |C| factor.

Hunziker et al. [HMP+03] also conjectured that there is a quantum exact learning algorithm

which learns any concept class C using O(
√
|C|) queries. This was established by Ambainis et al.

[AIK+04a], who also proved the following result:

Theorem 3.3.6. There is a quantum exact learning algorithm which learns any concept class C

with |C| > N using O(
√
N log |C| logN log log |C|) many queries.

27

3.3.2 A new quantum exact learning algorithm

We start with a simple yet useful observation:

Lemma 3.3.7. For any concept classC, there exists an x ∈ {0, 1}n for which at least a γ̂C fraction

of concepts c ∈ C satisfy c(x) = 1. More generally for every subset C ′ ⊆ C with |C ′| ≥ 2, there

exists an input x at which the fraction of concepts in C ′ yielding 1 is at least γC
′

(which is at least

as large as γ̂C).

Proof. It is sufficient to prove the result in the latter general form. Consider any subset C ′ ⊆ C

with |C ′| ≥ 2. By Definition 3.3.1 we know:

• γC′ ≥ γ̂C .

• At any input z ∈ {0, 1}n, the fraction of concepts in C ′ yielding 1 has to be at least γC
′

z .

Now consider the input a which satisfies γC
′

a = γC
′
: the fraction of concepts in C ′ yielding 1 at

input a should therefore be at least γC
′
. Thus taking x = a gives the intended result.

The quantity γ̂C can be bounded as follows:

Lemma 3.3.8. For any concept class C with |C| ≥ 2, 1
N+1 ≤ γC ≤ 1

2 . This also implies

1
N+1 ≤ γ̂

C ≤ 1
2 by Definition 3.3.1.

Proof. γC ≤ 1
2 is clear from the Definition 3.3.1. To prove the other direction we may assume that

γC < 1
N , since otherwise the result is obviously true. Therefore |C| > N must hold. Observe that

at each input x one of the following must hold:

• The fraction of concepts in C yielding 0 at x is at least 1 − γC and thus the fraction of

concepts in C yielding 1 at x is at most γC .

• The fraction of concepts in C yielding 1 at x is at least 1 − γC and thus the fraction of

concepts in C yielding 0 at x is at most γC .

Hence C can contain at most γC |C|N concepts which are not identically equal to the concept cmaj

28

Algorithm 1 Constructing a set of inputs which satisfies the semi-rich row condition.
1: S ← ∅, I ← ∅.
2: repeat
3: Perform a column flip on C \ S to make C \ S be 1-sensitive.
4: amax ← the input in {0, 1}n \ I at which the highest fraction of concepts in C \ S yield 1.
5: I ← I ∪ {amax}.
6: S ← S∪ the set of concepts in the original matrix C that yield 1 at input amax.
7: until |S| ≥ |C|/2.
8: Output← I.

defined as follows:

cmaj(x) =


0, if at least half of the concepts in C yield 0 at x;

1, otherwise.

Therefore C must be comprised of at most these γC |C|N concepts and possibly cmaj. Thus we

obtain:

γC |C|N + 1 ≥ |C| =⇒ γC ≥ |C| − 1
|C|N

≥ N

(N + 1)N
=

1
N + 1

Definition 3.3.9. A subset of inputs I ⊆ {0, 1}n is said to satisfy the semi-rich row condition for

C if at least half the concepts in C have the property that they yield 1 for at least a γ̂C fraction of

the inputs x in I.

The phrase “semi-rich row condition” is used because viewing C as a matrix, at least half the

rows of C are “rich” in 1s (have at least a γ̂C fraction of 1s) within the columns indexed by inputs

in I.A simple greedy approach can be used to construct a set of inputs which satisfies the semi-rich

row condition for C:

Lemma 3.3.10. Let C be any concept class with |C| ≥ 2. Then Algorithm 1 outputs a set of inputs

I with |I| ≤ 1
γ̂C which satisfies the semi-rich row condition for C.

Proof. Let τj |C| be the number of concepts in C \ S after the j-th execution of the repeat loop

in Algorithm 1, so τ0 = 1. Using the first result of Lemma 3.3.7, we obtain τ1 ≤ 1 − γ̂C . Now

invoking Lemma 3.3.7 once again but this time in its general form, we obtain τ2 ≤ (1 − γ̂C)2;

29

note that after the second iteration of the loop, each concept in S will yield 1 on at least half of the

elements in I. Let j′ equal b 1
γ̂C c. If Algorithm 1 proceeds for j′ iterations through the loop, then it

must be the case that τj′ ≤ (1− γ̂C)j
′

and that each concept in S yields 1 on at least a γ̂C fraction

of the elements in I. It is easy to verify that (1− x)b1/xc < 1/2 for 0 < x < 1
2 . We thus have that

τj′ |C| < |C|/2, and consequently |S| > |C|/2, so I satisfies the semi-rich row condition for C

and the algorithm will terminate before starting the (b 1
γ̂C c+ 1)-th iteration.

In the case γ̂C ≤ 1
N , then the set of all N inputs will satisfy the semi-rich row condition

for C: since any concept which does not yield 0 for all inputs actually yields 1 for at least a γ̂C

fraction of all inputs. Therefore in this case the algorithm will terminate successfully with an output

|I| ≤ N ≤ 1
γ̂C . Otherwise, since γ̂C > 1

N , we have that j′ < N . This means the algorithm never

runs out of inputs to add (i.e. {0, 1}N \ I is nonempty at every iteration).

Our quantum learning algorithm is given in Algorithm 2. Throughout the algorithm the set

S ⊆ C should be viewed as the set of possible target concepts that have not yet been eliminated;

the algorithm halts when |S| = 1. The high-level idea of the algorithm is that in every repetition

of the outer loop the size of S is multiplied by a factor which is at most 1
2 , so at most log |C|

repetitions of the outer loop are performed.

Theorem 3.3.11. Let C be any concept class with |C| ≥ 2. Algorithm 2 is a quantum exact

learning algorithm for C which performs O(log |C| log log |C|√
γ̂C

) quantum membership queries.

Proof. Consider a particular iteration of the outer Repeat-Until loop. The set S is 1-sensitive by

virtue of the first step (the column flip). By Lemma 3.3.10, in the second step of this iteration, I

becomes a set of at most 1
γ̂S many inputs which satisfies the semi-rich row condition for S. Con-

sequently, each execution of the Grover search within the inner Repeat-Until loop uses O(
√

1
γ̂S)

(which is also O(
√

1
γ̂C)) many queries. Since the inner loop repeats at most log(3 log |C|) many

times, if we can show that each iteration of the outer loop does indeed with high probability

• cause the size of S to be multiplied by a factor which is at most 1
2 , and

• maintain the property that the target concept is contained in S,

then the theorem will be proved.

30

Algorithm 2 A quantum exact learning algorithm.
1: S ← C.
2: repeat
3: Perform a column flip on S to make S 1-sensitive. Let K be the set of inputs at which the

output is flipped during this procedure.
4: I ← The output of Algorithm 1 invoked on the set of concepts S.
5: Counter← 0, Success←FALSE.
6: repeat
7: Perform the multi-target subset Grover search on I using 9

2d
√
|I|e queries [BBHT98].

8: a← Result of the Grover search.
9: if a classical query of the oracle at a yields 1 then

10: S ← {the concepts in S that yield 1 at a}, Success←TRUE.
11: end if
12: Counter←Counter+1.
13: until Success OR (Counter>= log(3 log |C|))
14: if NOT Success then
15: S ← the set of concepts that yield 0 for all of the inputs in I.
16: end if
17: Flip the outputs of concepts in S for all elements inK to reverse the earlier column flip (thus

restoring all concepts in S to their original behavior on all inputs).
18: until |S| = 1.
19: Output← A representation of a circuit which computes the sole concept c in S.

As shown in [BBHT98], the multi-target Grover search algorithm over a space of |I| many

inputs using 9
2d

√
|I|e many queries has the property that if there is any input a ∈ I on which the

target function yields 1, then the search will output such an a with probability at least 1
2 . Since the

inner loop repeats log(3 log |C|) many times, we thus have that if there is any input a ∈ I on which

the target concept yields 1, then with probability at least 1− 1
3 log |C| one of the log(3 log |C|) many

iterations of the inner loop will yield such an a and the “Success” variable will be set to TRUE.

Since the set S is 1-sensitive, when we eliminate from S all the concepts which yield 0 at a we

will multiply the size of S by at most 1
2 as desired in this case (and clearly we will not eliminate

the target concept from S). On the other hand, if the set I contains no input a on which the target

concept yields 1, then after log(3 log |C|) iterations of the inner loop we will exit with Success set

to FALSE, and the concepts that yield 1 on any input in I will be removed from S. This will clearly

not cause the target to be removed from S. Moreover because |I| ≤ 1
γ̂S , any concept for which

even a single input in I yields 1 has the property that at least a γ̂S fraction of inputs in I yield

1. Since I satisfies the semi-rich row condition for S, this means that we have eliminated at least

31

half the concepts in S. Thus, the algorithm will succeed with probability at least (1− 1
3 log |C|)

logC

which is larger than 2/3, and the theorem is proved.

Recall that Q(C) denotes the optimal query complexity over all quantum exact learning algo-

rithms for concept class C. We can show that the query complexity of Algorithm 2 is never much

worse than the optimal query complexity Q(C):

Corollary 3.3.12. For any concept class C, Algorithm 2 uses O(nQ(C)2 log log |C|) queries.

Proof. This follows directly from Theorem 3.3.11 and the bound Q(C) = Ω(log |C|
n + 1√

γ̂C
) of

Theorem 3.3.4.

Since |C| ≤ 22n
, the boundO(nQ(C)2 log log |C|) is alwaysO(n2Q(C)2), and thus the query

complexity of Algorithm 2 is always polynomially related to the query complexity of the optimal

algorithm for any concept class C.

Discussion

Algorithm 2 can be viewed as a variant of the algorithm of [AIK+04a] which learns any concept

class C from O(
√
N log |C| logN log log |C|) quantum membership queries. This algorithm re-

peatedly performs Grover search over the set of all inputs, with the goal each time of eliminating at

least half of the remaining target concepts. Instead, our approach is to perform each Grover search

only over sets which satisfy the semi-rich row condition for the remaining set of possible target

concepts. By doing this, we are able to obtain an upper bound on query complexity in terms of γ̂C

for every such iteration.

We observe that our new bound of O(log |C| log log |C|√
γ̂C

) is stronger than the previously ob-

tained upper bound of O(
√
N log |C| logN log log |C|) from [AIK+04a] as long as log |C|

γ̂C =

o(N logN). Thus, for any concept class C for which the O(log |C|
γ̂C) upper bound of Theorem 3.3.3

on classical membership query algorithms is nontrivial (i.e. is less than N), our results give an

improvement.

We note that independently Iwama et al. [AIK+04b] have recently given a new algorithm for

quantum exact learning that uses ideas similar to the construction of Algorithm 1; however the anal-

ysis is different and their results are incomparable to ours (their bounds depend only on the number

32

of concepts in C and not on the combinatorial parameter γ̂C). The main focus of [AIK+04b] is on

obtaining robust learning algorithms that can learn successfully using noisy oracle queries.

3.4 Relations between query complexity of quantum and classical ex-

act learning

As noted in [SG04], combining Theorems 3.3.3 and 3.3.4 yields the following:

Corollary 3.4.1. For any concept class C, we have Q(C) ≤ R(C) = O(nQ(C)3).

Can tighter bounds relating R(C) and Q(C) be given which hold for all concept classes C?

While we have not been able to answer this question, here we make some simple observations and

pose a question which we hope will stimulate further work.

We first observe that the factor n is required in the bound R(C) = O(nQ(C)3):

Lemma 3.4.2. For any positive integer d there exists a concept class C over {0, 1}n with R(C) =

ω(1) which has R(C) = Ω(Q(C)d).

Proof. We assume d > 1. Recall that in the Bernstein-Vazirani problem, the target concept is

an unknown parity function over some subset of the n Boolean variables x1, . . . , xn; Bernstein

and Vazirani showed [BV97] that for this concept class we have R(C) = n whereas Q(C) = 1.

We thus consider a concept class in which each concept c contains n1/d copies of the Bernstein-

Vazirani problem (each instance of the problem is over n(d−1)/d variables) as follows: we view

n-bit strings a, x as

a = (a1,1, a1,2, . . . , a1,n(d−1)/d , a2,1, a2,2, . . . , a2,n(d−1)/d , . . . an1/d,1, . . . , an1/d,n(d−1)/d)

x = (x1,1, x1,2, . . . , x1,n(d−1)/d , x2,1, x2,2, . . . , x2,n(d−1)/d , . . . xn(1/d),1, . . . , xn1/d,n(d−1)/d)

The class C consists of the set of all 2n concepts:

fa(x) =
n1/d∨
i=1

((ai,1, ai,2, . . . , ai,n(d−1)/d) · (xi,1, xi,2, . . . , xi,n(d−1)/d) mod 2)

33

i.e. fa(x) equals 1 if any of the n1/d parities corresponding to the substrings ai,· take value 1 on

the corresponding substring of x.

It is easy to see that n queries suffice for a classical algorithm, and by Theorem 3.3.2 we have

R(C) = Ω(log |C|), so R(C) = Θ(n). On the other hand, it is also easy to see that Q = O(n
1
d)

since a quantum algorithm can learn by making n1/d successive runs of the Bernstein-Vazirani

algorithm.

Finally, if d = 1 then as shown in [vD98] the set C of all 22n
concepts over {0, 1}n has

Q(C) = Θ(2n) and R(C) = Θ(2n).

The bound R(C) = O(nQ(C)3) implies that the gap of Lemma 3.4.2 can only be achieved for

concept classes C which have R(C) small. However, it is easy to exhibit concept classes which

have a factor n difference between R(C) and Q(C) for a wide range of values of R(C):

Lemma 3.4.3. For any k such that n−k = Θ(n), there is a concept class C withR(C) = Θ(n2k)

and Q(C) = Θ(2k).

Proof. The concept classC is defined as follows. A concept c ∈ C corresponds to (a0, . . . , a2k−1),

where each ai is a (n − k)-bit string. The concept c maps input x ∈ {0, 1}n to (ai · y) mod 2,

where i is the number between 0 and 2k − 1 whose binary representation is the first k bits of x and

y is the (n−k)-bit suffix of x. Since each concept in C is defined uniquely by 2k many (n−k)-bit

strings a0, . . . , a2k−1, there are 22k(n−k) concepts in C.

Theorem 3.3.2 yieldsR(C) = Ω(2k(n−k)). It is easy to see that in factR(C) = Θ(2k(n−k)):

For each of the 2k parities which one must learn (corresponding to the 2k possible prefixes of an

input), one can learn the (n− k)-bit parity with n− k classical queries.

It is also easy to see that by running the Bernstein-Vazirani algorithm 2k times (once for each

different k-bit prefix), a quantum algorithm can learn an unknown concept from C exactly using

2k queries, and thus Q(C) = O(2k). The Q(C) = Ω(log |C|
n) lower bound of Theorem 3.3.2 gives

us Q(C) = Ω(n−kn · 2
k) = Ω(2k), and the lemma is proved.

Based on these observations, we pose the following question:

Question 3.4.4. Does every concept class C satisfy R(C) = O(nQ(C) +Q(C)2)?

34

Note that the example in Lemma 3.4.3 and the concept class of Grover search [Gro96]: C =

{fi, 0 ≤ i < N : fi(x) = δi,x} saturate this upper bound.

3.5 On learning a partition of a concept class

Definition 3.5.1. Let C be a concept class over {0, 1}n. A partition P of C is a collection of

nonempty disjoint subsets P1, . . . , Pk whose union yields C.

In this section we study a different problem, mentioned by Ambainis et al. [AIK+04a], that is

more relaxed than exact learning: given a partition P of C and a black-box (quantum or classical)

oracle for an unknown target concept c in C, what is the query complexity of identifying the set Pi

in P which contains c? It is easy to see that both the exact learning problem (in which |P| = |C|)

and the problem of computing some binary property of c (for which |P| = 2) are special cases

of this more general problem. One can view these problems in the following way: for the exact

learning problem the algorithm must obtain all log |C| bits of information about the target concept,

whereas for the problem of computing a property of c the algorithm must obtain a single bit of

information. In a general instance of the partition problem, the algorithm must obtain log |P| bits

of information about the target concept.

Given a concept class C and a partition P of C, we will write RP(C) to denote the optimal

query complexity of any classical (randomized) algorithm for the partition problem which outputs

the correct answer with probability at least 2/3 for any target concept c. We similarly write QP(C)

to denote the optimal complexity of any quantum query algorithm with the same success criterion.

As noted earlier, for the case |P| = |C|we know from Corollary 3.4.1 that the quantitiesRP(C)

and QP(C) are polynomially related for any concept class C, since RP(C) = O(nQP(C)3). On

the other extreme, if |P| = 2 then concept classes are known for which RP(C) and QP(C) are

polynomially related (see e.g. [BBC+01]), and concept classes are also known for which there is

an exponential gap [Sim97]. It is thus natural to investigate the relationship between the size of |P|

and the existence of a polynomial relationship between RP(C) and QP(C).

In this section, we show that the number of sets in |P| alone (viewed as a function of |C|) often

does not provide sufficient information to determine whether RP(C) and QP(C) are polynomially

35

related. More precisely, in Section 3.5.1 we show that for any concept class C over {0, 1}n and

any value 2 ≤ k ≤ |C|, there is a partition P of C with |P| = k for which we have RP(C) =

O(nQP(C)3). On the other hand, in Section 3.5.2 we show that for a wide range of values of

|P| (again as a function of |C|), there are concept classes which have a superpolynomial separation

betweenRP(C) andQP(C). Thus, our results concretely illustrate that the structure of the partition

(rather than the number of the sets in the partition) plays an important role in determining whether

the quantum and classical query complexities are polynomially related.

3.5.1 Partition problems for which quantum and classical complexity are polyno-

mially related

The following simple lemma extends the cardinality-based lower bounds of Theorem 3.3.2 and

Theorem 3.3.4 for exact learning to the problem of learning a partition:

Lemma 3.5.2. For any partition P of any concept class C over {0, 1}n, we have RP(C) =

Ω(log |P|) and QP(C) = Ω(log |P|
n).

Proof. Let C ′ ⊆ C be a concept class formed by taking any single element from each subset in

the partition P. Learning P requires at least as many queries as exact learning the concept class C ′,

and so the result follows from Theorem 3.3.2 and Theorem 3.3.4.

To obtain a partition analogue of the other lower bounds of Theorems 3.3.2 and 3.3.4, we define

the following combinatorial parameter which is an analogue of γ̂C :

Definition 3.5.3. Let S be the set of all subsets C ′ ⊆ C, |C ′| ≥ 2 which have the property that any

subset C ′′ ⊆ C ′ with |C ′′| ≥ 3
4 |C

′| must intersect at least two subsets in P. We define γ̂CP to be

γ̂CP := minC′⊆S γ
C′ .

Thus each subset C ′ in S has the property that the partition induced on C ′ by P contains no

subset of size as large as 3
4 |C

′|.

The next lemma shows that for each C ′ ∈ S, the lower bounds for exact learning R(C ′) =

Ω(1
γC′) and Q(C ′) = Ω(1√

γC′
) which are implied by Theorems 3.3.2 and 3.3.4 extend to the

36

problem of learning a partition to yield RP(C ′) = Ω(1
γC′) and QP(C ′) = Ω(1√

γC′
). By consider-

ing the C ′ ∈ S which minimizes γC
′
, we obtain the strongest lower bound (this is the motivation

behind Definition 3.5.3).

Lemma 3.5.4. For any partition P = P1, . . . , Pk of the concept classC, we haveRP(C) = Ω(1
γ̂C

P

)

and QP(C) = Ω(1√
γ̂C

P

).

Proof. Let C ′ ∈ S be such that γ̂CP = γC
′
. We consider the problem of learning the partition

induced by P over C ′, and shall prove the lower bound for this easier problem. We may assume

without loss of generality that C ′ is 1-sensitive.

We first consider the classical case. We claim that there is a partition {S1, S2} of C ′ with the

property that each subset (Pj ∩ C ′) is contained entirely in exactly one of S1, S2 (i.e. S1, S2 is a

“coarsening” of the partition induced by P over C ′) which satisfies mini=1,2 |Si| > 1
4 |C

′|. To see

this, we may start with S2 = ∅, S1 = ∪ki=1(Pi ∩ C ′) = C ′ and consider a process of “growing”

S2 by successively removing the smallest piece Pj ∩ C ′ from S1 and adding it to S2. W.l.o.g. we

may suppose that |Pj ∩ C ′| ≤ |Pj+1 ∩ C ′| for all j, so the pieces Pj ∩ C ′ are added to S2 in order

of increasing j = 1, 2, Let t be the index such that adding Pt ∩ C ′ to S2 causes |S2| to exceed

1
4 |C

′| for the first time. By Definition 3.5.3 it cannot be the case that adding Pt ∩ C ′ causes S2

to become all of C ′ (since this would mean that Pt ∩ C ′ is a subset of size at least 3
4 |C

′| which

intersects only Pt); thus it must be the case that after this t-th step S1 is still nonempty. However, it

also cannot be the case that after this t-th step we have |S1| < 3
8 |C

′|; for if this were the case, then

after the t-th step we would have |Pt ∩ C ′| > 3
8 |C

′| > |S1| = ∪kj=t+1(Pj ∩ C ′) and this would

violate the assumption that sets are added to S2 in order of increasing size.

Since C ′ is 1-sensitive, the “worst case” for a learning algorithm is that each classical query to

the target concept (some c ∈ C ′) yields 0. By definition of γC
′
, each such query eliminates at most

γC
′ · |C ′| many possible target concepts from C ′. Consequently, after b 1/4

γC′ c − 1 classical queries,

the set of possible target concepts in C ′ is of size at least 3
4 |C

′|, and so it must intersect both S1

and S2. It is thus impossible to determine with probability greater than 1/2 whether c belongs to

S1 or S2, and thus which piece Pi of P contains c. This gives the classical lower bound.

Our analysis for the quantum case requires some basic definitions and facts about quantum

computing:

37

Definition 3.5.5. If |φ〉 =
∑

z αz|z〉 and |ψ〉 =
∑

z βz|z〉 are two superpositions of basis states,

then the Euclidean distance between |φ〉 and |ψ〉 is ‖|φ〉 − |ψ〉‖ = (
∑

z |αz − βz|2)1/2. The total

variation distance between two distributions D1 and D2 is defined to be
∑

x |D1(x)−D2(x)|.

Fact 3.5.6. (See [BV97]) Let |φ〉 and |ψ〉 be two unit length superpositions which represent possi-

ble states of a quantum register. If the Euclidean distance ‖|φ〉− |ψ〉‖ is at most ε, then performing

the same observation on |φ〉 and |ψ〉 induces distributions Dφ and Dψ which have total variation

distance at most 4ε.

For the quantum lower bound, suppose we have a quantum learning algorithm which makes at

most T = b 1/4

32
√
γC′
c − 1 quantum membership queries. We will use the following result which

combines Theorem 6 and Lemma 7 from [SG04] (those results are in turn based on Theorem 6.6

of [BBBV97]):

Lemma 3.5.7 (See [SG04]). Consider any quantum algorithm N which makes T quantum mem-

bership queries. Let |φcT 〉 denote the state of the quantum register after all T membership queries

are performed in the algorithm, if the target concept is c. Then for any 1-sensitive set C ′ ⊆ C of

concepts with |C ′| ≥ 2 and any ε > 0, there is a set S ⊆ C ′ of cardinality at most T 2|C ′|γC′/ε2

such that for all c ∈ C ′\S, we have ‖|φ0
T 〉−|φcT 〉‖ ≤ ε (where 0 denotes the identically 0 concept).

If we take ε = 1
32 , then Lemma 3.5.7 implies that there exists a set S ⊆ C ′ of cardinality

less than 1
4 · |C

′| such that for all c ∈ C ′ \ S one has ‖|φ0
T 〉 − |φcT 〉‖ ≤

1
32 . Consequently by

Definition 3.5.3 there must exist two concepts c1, c2 ∈ C ′ \ S with ‖|φc1T 〉 − |φ
c2
T 〉‖ ≤

1
16 which

belong to different subsets Pi and Pj of P. By Fact 3.5.6, the probability that our quantum learning

algorithm outputs “i” can differ by at most 1
4 when the target concept is c1 versus c2; but this

contradicts the assumption that the algorithm is correct with probability at least 2/3 on all target

concepts. This proves the quantum lower bound.

Before proving the main result of this section, we establish the following result which gives a

sufficient condition for the quantum and classical complexities QP(C) and RP(C) of learning a

partition to be polynomially related. This result is a generalization of Corollary 3.4.1.

38

Corollary 3.5.8. For a partition P over the concept class C, if the size of the largest subset Pi in

P is less than 3/4
γ̂C , then we have RP(C) = O(nQP(C)3).

Proof. Let C ′ be a subset of C for which γC
′

equals γ̂C . We have that |C ′| ≥ 1
γ̂C by Defini-

tion 3.3.1. Thus any 3
4 fraction of C ′ must intersect at least two subsets in P, so C ′ must belong

to S. This forces γ̂CP = γC
′

= γ̂C . Moreover, we have that |P| ≥ 4
3 γ̂

C · |C|, and we know that

1
N+1 ≤ γ̂C ≤ 1

2 by Lemma 3.3.8. Thus we have log |P| ≥ log 4
3 − n+ log |C|, and consequently

log |P|
n > log |C|

n −1. Lemmas 3.5.2 and 3.5.4 yieldQP(C) = Ω(log |P|
n + 1√

γ̂C
P

) = Ω(log |C|
n + 1√

γ̂C
).

Combining this with the bound RP(C) = O(log |C|
γ̂C) (which clearly follows from Theorem 3.3.3

since the partition learning problem is no harder than the exact learning problem), we have that

RP(C) must be O(nQP(C)3).

We note here that we could have used any constant λ satisfying 2
3 < λ < 1 in Definition 3.5.3

in place of 3/4, and obtained corresponding versions of Lemma 3.5.4 and the above corollary with

λ in place of 3/4.

Now we prove our main result of this subsection, showing that for any concept class C and any

partition size bound 2 ≤ k ≤ |C| there is a partition of C into k pieces such that the classical and

quantum query complexities are polynomially related:

Theorem 3.5.9. Let C be any concept class and k any integer satisfying 2 ≤ k ≤ |C|. Then there

is a partition P of C with |P| = k for which we have RP(C) = O(nQP(C)3).

Proof. We will show that Algorithm 4 constructs a partition P with the desired properties. Algo-

rithm 4 uses a slightly modified version of Algorithm 1, which we call Algorithm 3. Algorithm 3

differs from Algorithm 1 in that if the input amax corresponds to a column which is flipped in the

column flip onC \R, then Algorithm 3 augmentsR by adding those concepts in the flipped version

of C \R which yield 1 on amax (note that by 1-sensitivity this is fewer than half of the concepts in

C \R), whereas Algorithm 1 adds those concepts which yield 1 on amax in the unflipped (original)

version of C \ R. Thus at each stage Algorithm 3 grows the set R by adding at most half of the

remaining concepts in C \R; we will need this property later. The analysis of Algorithm 1 carries

over to show that the set I of inputs which Algorithm 3 constructs is of size at most |I| ≤ 1
γ̂C .

39

Algorithm 3 A slightly modified version of Algorithm 1 to be used in generating a partition.
Require: C is 1-sensitive.

1: R← ∅, I ← ∅, J ← ∅.
2: repeat
3: Perform a column flip on C \ R to make it 1-sensitive; call the resulting 1-sensitive matrix

M.
4: amax ← the input in {0, 1}n \ I at which the highest fraction of concepts in C \R yield 1.
5: I ← I ∪ {amax}.
6: R← R∪ the set of concepts in M that yield 1 at input amax.
7: if the column corresponding to amax in M was flipped relative to C then
8: J ← J ∪ {amax}.
9: end if

10: until |R| ≥ |C|/2.
11: Output← (I,J).

At each iteration of the outer repeat loop, Algorithm 4 successively refines the partition Q until

|Q| = k. Let C ′ ⊆ C be such that γC
′
= γ̂C . The first time Algorithm 4 passes through the inner

repeat loop we will have |C| = |S| and thus Algorithm 3 will be invoked on C ′. We will write

C◦, C? to denote these sets S◦, S? of concepts that are formed out of C in this first iteration. The

final partition P will ultimately be a refinement of the partition {C◦, C?} obtained in this step; we

will see later that this will force γ̂CP = γ̂C (this is why the first iteration is treated differently than

later iterations).

In addition to constructing the partition P, the execution of Algorithm 4 should also be viewed

as a “memoization” process in which various sets of inputs I(S),J (S) and K(S) are defined

to correspond to different sets of concepts S. These sets will be used during the execution of

Algorithm 5 later. Roughly speaking, the division of S in each iteration depends only on the values

on inputs in I(S), the set J (S) is used to keep track of the column flips Algorithm 3 performs,

and the set K(S) keeps track of those inputs which need to be flipped to achieve 1-sensitivity.

We now explain the outer loop of Algorithm 4 in more detail. The algorithm works in a breadth-

first fashion to successively refine the partition Q, which is initially just {C}, into the final partition

P. After the first iteration of the outer loop, C has been partitioned into {C◦, C?}. Similarly, in

the second iteration each of these sets is divided in two to give a four-way partition. The algorithm

continues in this manner until the desired number of elements in the partition is reached. The main

idea of the construction is that each division of a set S (after the first iteration) creates two pieces

40

S◦ and S? of almost equal size as we shall describe below. Because degenerate divisions do not

occur, we will see the algorithm will terminate after at most O(log k) iterations of the outer loop.

Recall from above that each invocation of Algorithm 3 in Algorithm 4 on a set S of concepts

yields a set I(S) of at most 1
γ̂S many inputs. By flipping the output of concepts in S at inputs

in J (S) in Step 14 of Algorithm 4, we ensure that the sets S◦ and S? defined in steps 15 and 16

correspond precisely to the sets C \ R and R of Algorithm 3 when it terminates. It thus follows

from the termination condition of Algorithm 3 that |S?|/|S| ≥ 1
2 . Recall also from the discussion

in the first paragraph of this proof that the last iteration of the loop of Algorithm 3 adds at most

half of the remaining concepts into the set R. Therefore we have that the set S◦ in Algorithm 4

must satisfy |S◦|/|S| > 1
4 . It follows from these bounds on |S◦|/|S| and |S?|/|S| that Algorithm 4

makes at most O(log k) many iterations through the outer loop.

It is therefore clear that at each iteration of the main loop of Algorithm 4 for which |S| ≥ 2,

each of the sets S◦ and S? formed from S will be nonempty. This ensures that the algorithm will

keep producing new elements in the partition until |P| = k is reached. The same argument shows

thatC◦, C? are each nonempty and satisfy |C◦∩C ′|/|C ′| > 1
4 and |C?∩C ′|/|C ′| ≥ 1

2 . This implies

that C ′ is an element of the set S of Definition 3.5.3: any subset C ′′ ⊆ C ′ with |C ′′| ≥ 3
4 |C

′| must

intersect both C◦ and C?, and thus must intersect at least two subsets of P since P is a refinement

of {C◦, C?}. Consequently we have γ̂CP = γ̂C .

To show that the partition P satisfies RP(C) = O(nQP(C)3), we now give an analysis of the

query complexity of learning P with both classical and quantum resources. As we will see, we

need to give a classical upper bound and a quantum lower bound to obtain our goal.

In the classical case, we will show that Algorithm 5 makes O(log |P|
γ̂C) queries and successfully

learns the partition P. Using the sets I(S) which were defined by the execution of Algorithm 4,

Algorithm 5 makes its way down the correct branch of the binary tree implicit in the successive re-

finements of Algorithm 4 to find the correct piece of the partition which contains c. More precisely,

at the end of the t-th iteration of the outer loop of Algorithm 5, the set S which Algorithm 5 has just

obtained will be identical to the piece c resides in of the partition constructed by Algorithm 4 at the

end of the t-th iteration of its outer loop. As shown above, it takesO(log k) = O(log |P|) iterations

until the subset which the target concept c lies in is reached. Moreover, by the same argument in

41

Algorithm 4 Constructing a partition for which RP(C) and QP(C) are polynomially related.
1: Q← {C}
2: repeat
3: R← ∅.
4: repeat
5: S ← an element in Q

6: if |S| ≥ 2 then
7: if |C| = |S| then
8: Let K(S) denote the inputs which, if flipped, would make C ′ be 1-sensitive (C ′ is

defined in the 2nd paragraph of the proof of Theorem 3.5.9). Flip the values of
concepts in S at inputs in K(S).

9: (I(S),J (S))← The output of Algorithm 3 invoked with C ′.
10: else
11: Let K(S) denote the inputs which, if flipped, would make S be 1-sensitive. Flip the

values of concepts in S at inputs in K(S).
12: (I(S),J (S))← The output of Algorithm 3 invoked with input S.
13: end if
14: Flip the values of concepts in S at those inputs in J (S).
15: S◦ ← {the concepts in S that yield 0 for each x ∈ I(S)}.
16: S? ← S \ S◦.
17: Flip the values of concepts in S◦, S? for all elements in J (S).
18: Flip the values of concepts in S◦, S? for all elements in K(S).
19: R← R ∪ {S◦, S?}.
20: else
21: R← R ∪ {S}.
22: end if
23: Q← Q \ {S}.
24: until Q = ∅ OR |Q|+ |R| = k.
25: Q← Q ∪ R.
26: until |Q| = k.
27: P← Q.

Lemma 3.3.10, Algorithm 3 always outputs a set of inputs I(S) with size at most 1
γ̂S ≤ 1

γ̂C when

invoked on a set of concepts S. Therefore at each of these O(log |P|) iterations Algorithm 5 makes

at most 1
γ̂C many queries. Thus Algorithm 5 is a classical algorithm that learns P using O(log |P|

γ̂C)

queries, so we have RP(C) = O(log |P|
γ̂C).

In the quantum case: since we have γ̂CP = γ̂C , by Lemma 3.5.4 any quantum algorithm learn-

ing P should perform Ω(1√
γ̂C

) quantum membership queries. Combining this result with that of

Lemma 3.5.2, we have that QP(C) = Ω(log |P|
n + 1√

γ̂C
). Combining this inequality with the clas-

sical upper bound RP = O(log |P|
γ̂C) from Algorithm 5, we have that RP(C) = O(nQP(C)3) for

this partition P, and we are done.

42

Algorithm 5 A classical algorithm learning P.
1: S ← C
2: repeat
3: Flip the values of concepts in S at those inputs in K(S).
4: Flip the values of concepts in S at those inputs in J (S).
5: Classically query the given oracle implementing c at all elements in I(S).
6: Z ←TRUE if c yields 0 for all elements in I(S). Z ←FALSE otherwise.
7: if Z then
8: S ← {the concepts in S that yield 0 for each x ∈ I(S)}.
9: else

10: S ← {the concepts in S that yield 1 for at least one x ∈ I(S)}.
11: end if
12: Flip the values of concepts in S at those inputs in J (S).
13: Flip the values of concepts in S at those inputs in K(S).
14: until S ∈ P.
15: Output← S.

3.5.2 A partition problem with a large quantum-classical gap

In the previous subsection we showed that for any concept class and any partition size bound, there

is a partition problem for which the classical and quantum query complexities are polynomially re-

lated. In this section, by adapting a result of Simon [Sim97] we show that for a wide range of values

of the partition size bound, it is possible for the classical query complexity to be superpolynomially

larger than the quantum query complexity:

Theorem 3.5.10. Let n = m + logm. For any value 1 ≤ ` < m, there is a concept class C

over {0, 1}n with |C| < 2m`−`
2+`+m2m−`

and a partition P of C with |P| > 2m`−`
2−` such that

RP(C) = Ω(2m−`) and QP(C) =poly(m)).

Taking ` = m − α(m) where α(m) is any function which is ω(logm), we obtain RP(C) =

mω(1) whereas QP(C) =poly(m), for a superpolynomial separation between classical and quan-

tum query complexity. Such a choice of ` gives |P| = 2Ω(m) whereas |C| is roughly 2m·2
α(m)

. Note

that the size of |C| can be made to be 2β(m) for any slightly superpolynomial function β(m) via a

suitable choice of α(m) = ω(logm). This means that viewed as a function of |C|, it is possible

for |P| to be as large as 2(log |C|)ε(|C|)
for any function ε(·) = o(1) and still have the classical query

complexity be superpolynomially larger than the quantum query complexity.

Proof of Theorem 3.5.10: We will use a result of Simon [Sim97] who considers functions f :

43

{0, 1}m → {0, 1}m. Any such function f : {0, 1}m → {0, 1}m can equivalently be viewed as a

function f̃ : ({0, 1}m × {1, . . . ,m}) → {0, 1} where f̃(x, j) equals f(x)j , the j-th bit of f(x).

It is easy to see that we can simulate a call to an oracle for f : {0, 1}m → {0, 1}m by making m

membership queries to the oracle for f̃ , in both the classical and quantum case. This extra factor

of m is immaterial for our bounds, so we will henceforth discuss functions f which map {0, 1}m

to {0, 1}m.

We view the input space {0, 1}m as the vector space Fm2 .Given a `-dimensional vector subspace

V ⊂ Fm2 , we say that a function f : {0, 1}m → {0, 1}m is V -invariant if the following condition

holds: f(x) = f(y) if and only if x = y ⊕ v for some v ∈ V. Thus a V -invariant function f

is defined by the 2m−` distinct values it takes on representatives of the 2m−` cosets of V . The

concept class C is the class of all functions f which are V -invariant for some `-dimensional vector

subspace V of Fm2 .

A simple counting argument shows that there are

Nm,` =
(2m − 1)(2m − 2)(2m − 4) · · · (2m − 2`−1)

(2` − 1)(2` − 2)(2` − 4) · · · (2` − 2`−1)

many `-dimensional subspaces of Fm2 . This is because there are (2m−1)(2m−2)(2m−4) · · · (2m−

2`−1) ways to choose an ordered list of ` linearly independent vectors to form a basis for V , and

given any V there are (2`−1)(2`−2)(2`−4) · · · (2`−2`−1) ordered lists of vectors from V which

could serve as a basis.

We define the partition P to divide C into Nm,` equal-size subsets, one for each `-dimensional

vector subspace V ; the subset of concepts corresponding to a given V is precisely those functions

which are V -invariant. For any given `-dimensional subspace V , the number of functions that are

V -invariant is

Im,` = 2m(2m − 1)(2m − 2) · · · (2m − 2m−` + 1)

since one can uniquely define such a function by specifying distinct values to be attained on each

of the 2m−` coset representatives.

Therefore we have |C| = Nm,` ·Im,`, and it is easy to check that 2m`−`
2−` ≤ Nm,` ≤ 2m`−`

2+`

and Im,` ≤ 2m2m−`
. It remains only to analyze the quantum and classical query complexities.

44

For the quantum case, it follows easily from Simon’s analysis of his algorithm in [Sim97] that

for any V -invariant f, each iteration of Simon’s algorithm (which requires a single quantum query

to f) will yield a vector that is independently and uniformly drawn from the (m− `)-dimensional

subspace V ⊥. A standard analysis shows that after O(m) iterations, with very high probability we

will have obtained a set of vectors that span V ⊥; from these it is easy to identify V and thus the

piece of the partition to which f belongs.

For the classical case, an analysis much like that of ([Sim97], Section 3.2) can be used to show

that any classical algorithm which correctly identifies the vector subspace V with high probability

must make 2Ω(m−`) many queries; since the proof is similar to [Sim97] we only sketch the main

ideas here. We say that a sequence of queries is good if it contains two distinct queries which yield

the same output (i.e. two queries x, y which have (x⊕y) ∈ V), and otherwise the sequence is bad.

The argument of [Sim97] applied to our setting shows that if the target vector subspace is chosen

uniformly at random, then any classical algorithm making M = 2(m−`)/3 queries makes a good

sequence of queries with very small probability. On the other hand, if a sequence ofM = 2(m−`)/3

queries is bad, then this restricts the possibilities for V by establishing a set S of
(
M
2

)
< 22(m−`)/3

many “forbidden” vectors from Fm2 which must not belong to the target vector space V (since for

each pair of elements x, y in M we know that (x⊕ y) /∈ V). Given a fixed nonzero vector z ∈ Fm2 ,

we have that a random `-dimensional vector space W contains z with probability 2`−1
2m−1 <

2`

2m , and

consequently the probability that a randomW contains any element of S is at most 22(m−`)/3· 2`

2m =

2(`−m)/3, which is less than 1/2 if ` < m−6 (and if ` ≥ m−6 the bound of the theorem is trivially

true). Thus at least half of the Nm,` possible `-dimensional vector subspaces are compatible with

any given bad sequence of 2(m−`)/3 queries, so the classical algorithm cannot have identified the

right subspace with non-negligible probability.

3.6 Quantum versus classical PAC learning

3.6.1 The quantum PAC learning model

The quantum PAC learning model was introduced by Bshouty and Jackson in [BJ99]. A quantum

PAC learning algorithm is defined analogously to a classical PAC algorithm, but instead of having

45

access to a random example oracle EX(c,D) it can (repeatedly) access a quantum superposition of

labeled examples. The goal of constructing a classical Boolean circuit hwhich is an ε-approximator

for c with probability 1 − δ is unchanged. More precisely, for D a distribution over {0, 1}n, the

quantum example oracle associated to c under D QEX(c,D) is the quantum oracle whose query

acts on the computational basis state |0n, 0〉 as follows:

|0n, 0〉 7→
∑

x∈{0,1}n

√
D(x)|x, c(x)〉.

We leave the action of a QEX(c,D) query undefined on other basis states, and we require that a

quantum PAC learning algorithm may only invoke a QEX(c,D) query on the basis state |0n, 0〉.

We sometimes refer to a query to the quantum example oracle as a quantum example. It is easy to

verify (see [BJ99]) that a QEX(c,D) oracle can simulate a classical EX(c,D) oracle.

As noted in Lemma 6 of [BJ99], we may assume without loss of generality (by renumbering

qubits) that all QEX(c,D) queries in a quantum PAC learning algorithm occur sequentially at the

beginning of the algorithm’s execution and that the t-th query of QEX(c,D) affects the qubits

(t − 1)(n + 1) + 1, (t − 1)(n + 1) + 2, . . . , t(n + 1). After all T QEX(c,D) queries have been

performed, the algorithm performs a fixed unitary transformation and then a measurement takes

place. (See [BJ99, SG04] for more details on the quantum PAC learning model.) The quantum

sample complexity is the number of queries T of QEX which the quantum PAC learning algorithm

performs, i.e. the number of QEX gates in the quantum circuit corresponding to the quantum PAC

learning algorithm.

The following definition plays an important role in the sample complexity of both classical and

quantum PAC learning:

Definition 3.6.1. If C is a concept class over some domain X and W ⊆ X , we say that W is

shattered by C if for every W ′ ⊆ W , there exists a c ∈ C such that W ′ = c ∩W . The Vapnik-

Chervonenkis dimension of C, VC-DIM(C), is the cardinality of the largest W ⊆ X such that W

is shattered by C.

46

3.6.2 Known results on quantum versus classical PAC learning

The classical sample complexity of PAC learning has been intensively studied and nearly matching

upper and lower bounds are known:

Theorem 3.6.2.

• [EHKV89] Any classical (ε, δ)-PAC learning algorithm for a non-trivial concept class C of

VC dimension d must have classical sample complexity Ω(1
ε log 1

δ + d
ε).

• [BEHW89] Any concept class C of VC dimension d can be (ε, δ)-PAC learned by a classical

algorithm with sample complexity O(1
ε log 1

δ + d
ε log 1

ε).

Servedio and Gortler [SG04] gave a lower bound on the quantum sample complexity of PAC

learning. They showed that for any concept classC of VC dimension d over {0, 1}n, if the distribu-

tion D is uniform over the d examples in some shattered set S, then even if the learning algorithm

is allowed to make quantum membership queries on any superposition of inputs in the domain S,

any algorithm which with high probability outputs a high-accuracy hypothesis with respect to D

must make at least Ω(dn) many queries. Such membership queries can simulate QEX(c,D) queries

since the support of D is S, and thus this gives a lower bound on the sample complexity of quantum

PAC learning with a QEX oracle.

3.6.3 Improved lower bounds on quantum sample complexity of PAC Learning

In this section we give improved lower bounds on the sample complexity of quantum (ε, δ)-PAC

learning algorithms for concept classes C of VC dimension d. These new bounds nearly match the

classical lower bounds of [EHKV89].

We first note that the Ω(dn) lower bound of [SG04] can be easily strengthened to Ω(d):

Observation 3.6.3. Let C be any concept class of VC dimension d and let D be the uniform

distribution over a shattered set S of size d. Then any quantum learning algorithm which

• can make quantum membership queries on any superposition of inputs in the domain S, and

• with high probability outputs a hypothesis with error rate at most ε = 1
10

47

must make at least d
100 queries (and consequently the sample complexity of PAC learning C with a

QEX oracle is Ω(d)).

Recall that in the exact learning model, the concept class C of all parity functions over n

Boolean variables has VC dimension d = n yet can be exactly learned with one call to a quantum

membership oracle using the Bernstein-Vazirani algorithm [BV97]. In light of this, we feel that

this improvement from Ω(dn) to Ω(d) is somewhat unexpected, and may even at first appear con-

tradictory. The key to the apparent contradiction is that the Bernstein-Vazirani algorithm makes its

membership query on a superposition of all 2n inputs in {0, 1}n, not just the n inputs in a fixed

shattered set S.

Proof. It suffices to slightly sharpen the proof of Theorem 4.2 from [SG04]. The key observa-

tion is that since queries always have zero amplitude on computational basis states outside of the

shattered set S, the effective value of the domain size N is |S| = d rather than |{0, 1}n| = 2n.

With this modification, at the end of the proof of Theorem 4.2 we obtain the inequality N0 =∑2T
i=0

(
d
i

)
≥ 2d/6 where T is the quantum query complexity of the algorithm (instead of the in-

equality
∑2T

i=0

(
2n

i

)
≥ 2d/6 which appears in [SG04]). Now standard tail bounds on binomial

coefficients (see e.g. Appendix 9 of [KV94]) show that T > d
100 .

We now give lower bounds on the quantum query complexity of (ε, δ)-PAC learning which

depend on ε and δ. We require the following definition and fact:

Definition 3.6.4. A concept class C is said to be trivial if either C contains only one concept, or

C contains exactly two concepts c0, c1 with each x ∈ {0, 1}n belonging to exactly one of c0, c1.

Fact 3.6.5 (See [Shi00]). Let |ψ(0)〉, |ψ(1)〉 represent states of a quantum system and Π be the linear

projection associated to a measurement in the computational basis such that 〈ψ(0)|Π|ψ(0)〉 ≥ 1−δ

and 〈ψ(1)|Π|ψ(1)〉 ≤ δ for some δ > 0. Then we have |〈ψ(0)|ψ(1)〉| ≤ 2
√
δ(1− δ).

It is clear that a trivial concept class can be learned exactly from any single (classical) exam-

ple. For nontrivial concept classes [BEHW89] gave a classical sample complexity lower bound of

Ω(1
ε log 1

δ). We now extend this bound to the quantum setting:

48

Lemma 3.6.6. Any quantum algorithm with a QEX(c,D) oracle which (ε, δ)-learns a non-trivial

concept class must have quantum sample complexity Ω(1
ε log 1

δ).

Proof. Since C is non-trivial, without loss of generality we may assume that there are two inputs

x0, x1 and two concepts c0, c1 ∈ C such that c0(x0) = c1(x0) = 0 while c0(x1) = 0, c1(x1) = 1.

Let D be the distribution where D(x0) = 1 − 3ε and D(x1) = 3ε. Under this distribution, no

hypothesis which is ε-accurate for c0 can be ε-accurate for c1 and vice versa.

Let |ψ(i)
T 〉 be the state of the system immediately after the T queries of QEX(ci,D) are per-

formed, and U be the fixed unitary transformation before the measurement. Then we have

〈ψ(i)
T |x0, 0, x0, 0, . . . , x0, 0︸ ︷︷ ︸

repeated T times

, 0 . . . , 0〉 = (1− 3ε)T/2, for i = 0, 1.

It is easy to see that any other computational basis state | . . . , x1, b, . . . 〉 which has nonzero am-

plitude in |ψ(b)
T 〉 must have zero amplitude in the other possible state |ψ(1−b)

T 〉, because c0 and

c1 disagree on x1. Consequently we have 〈ψ(0)
T |U †U |ψ

(1)
T 〉 = 〈ψ(0)

T |ψ
(1)
T 〉 = (1 − 3ε)T . When

the algorithm terminates, the measurement outcome of the state U |ψ(i)
T 〉 will determine the result

of the algorithm for concept ci. Therefore, if (1 − 3ε)T > 2
√
δ(1− δ) then Fact 3.6.5 dictates

there is some output hypothesis which occurs with probability greater than δ whether the target

is c0 or c1; but this cannot be the case for an (ε, δ)-PAC learning algorithm. Thus we must have

(1− 3ε)2T ≤ 4δ yielding T = Ω(1
ε log 1

δ).

Ehrenfeucht et al. [EHKV89] obtained a Ω(dε) lower bound for classical PAC learning by con-

sidering a distribution D which distributes Θ(ε) weight evenly over all but one of the elements in

a shattered set. In other words under D one element in the shattered set has weight 1 − Θ(ε) and

all the remaining d − 1 elements has equal weight Θ(ε)
d−1 . We use such a distribution to obtain the

following quantum lower bound (no attempt has been made to optimize constants):

Theorem 3.6.7. Let C be any concept class of VC dimension d + 1. Let δ = 1/5. Then we have

that for sufficiently large d (i.e. d ≥ 625 suffices) and any 0 < ε < 1
32 , any quantum algorithm with

a QEX(c,D) oracle which (ε, δ)-learns C must have quantum sample complexity at least
√
d

10000ε .

Proof. Let {x0, x1, . . . , xd} be a set of inputs which is shattered byC. We consider the distribution

49

D, first introduced by [EHKV89], which has D(x0) = 1−8ε and D(xi) = 8ε
d for i = 1, . . . , d. Let

H(x) = −x log x− (1− x) log(1− x) denote the binary entropy function. As is noted in [SG04],

there exists a set s1, . . . , sA of d-bit strings such that for all i 6= j the strings si and sj differ in at

least d/4 positions where A ≥ 2d(1−H(1/4)) > 2d/6. For each i = 1, . . . , A let ci be a concept such

that

• ci(x0) = 0, and

• the d-bit string (ci(x1), . . . , ci(xd)) is si.

The existence of such concepts follows from Definition 3.6.1. Since we have ε < 1
32 , our quantum

PAC learning algorithm should successfully distinguish between any two target concepts ci and cj

with confidence at least 1 − δ = 4
5 . Moreover, without loss of generality we may suppose that

ε < 1
100
√
d

since otherwise Observation 3.6.3 yields the required lower bound.

We shall make use of the following standard inequality:

(1− x)` ≥ 1− x`, if x` < 1 for ` ∈ Z+, x ∈ R+. (3.6.1)

Given a target concept c, we write |ξi1,i2,...,it〉 to denote the basis state

|ξi1,i2,...,it〉 = |xi1 , c(xi1), xi2 , c(xi2), . . . xit , c(xit)〉.

We define the state |φt〉 to be

|φt〉 = (1−8ε)t/2|ξ0,0,...,0〉+(1−8ε)
t−1
2

√
8ε
d

d∑
i=1

(|ξi,0,0,...,0〉+|ξ0,i,0,...,0〉+. . .+|ξ0,0,...,i〉)+α|z〉.

Here |z〉 is some canonical basis state which is distinct from, and hence orthogonal to, all states of

the form |ξi1,i2,...,it〉, e.g. we could take z = |x1, c(x1), x1, 1− c(x1), 0, 0, . . . , 0〉. The scalar α is

a suitable normalizing coefficient so that the Euclidean norm of |φt〉 is 1.

Let |ψt〉 denote the state of the quantum register after t invocations of QEX(c,D) have oc-

curred. It is easy to see from the definition of the QEX(c,D) oracle that the amplitude of |ψt〉 on the

basis state |ξ0,...,0〉 will be (1− 8ε)t/2, and that for each of the td many basis states |ξ0,0,...,0,i,0,...,0〉

50

(where i ranges over all t positions and ranges in value from 1 to d) the amplitude of |ψt〉 on this

basis state will be (1− 8ε)
t−1
2

√
8ε
d . We thus have that 〈ψt|φt〉 = (1− 8ε)t

(
1 + 8tε

1−8ε

)
.

If we let t = 1
100ε
√
d

(note that t ≥ 1 by our assumption that ε < 1
100
√
d

), we then have that

(1 − 8ε)t > (1 − 1
12
√
d
) by (3.6.1), and it is easy to check that (1 + 8tε

1−8ε) > 1 + 1
12
√
d

from the

bounds on ε and d in the theorem statement. We thus have that

〈ψt|φt〉 > 1− 1
144d

. (3.6.2)

Now let us consider what happens if we replace each successive block of t = 1
100ε
√
d

invoca-

tions of the QEX(c,D) oracle in our PAC learning algorithm with the transformation

Q : |0t(n+1)〉 7→ |φt〉.

If the learning algorithm makes a total of T calls to QEX(c,D) then we perform T/t replacements.

After all T/t calls to Q in the modified algorithm, the initial state |0 . . . 0〉 evolves into the state

|ϕ〉 = |φt〉 . . . |φt〉︸ ︷︷ ︸
T/t times

|0 . . . 0〉.

By equation (3.6.2), we have that 〈ψT |ϕ〉 > (1− 1
144d)

T/t. If T/t ≤ d/100 (i.e. if T ≤
√
d

10000ε),

then by (3.6.1) this lower bound is at least 143
144 , and this implies (since the original algorithm with

T many QEX(c,D) calls was successful on each target ci with probability at least 4/5) that the

modified algorithm which makes at most d/100 many calls to Q is successful with probability at

least 2/3. However, the exact same polynomial-based argument which underlies the Ω(d/n) lower

bound for PAC learning proved in [SG04] (and the improved d
100 lower bound of Observation 3.6.3)

implies that it is impossible for our modified algorithm, which makes at most d/100 many calls

to Q, to succeed on each target ci with probability at least 2/3. (The crux of that proof is that

each invocation of a black-box oracle for c increases the degree of the polynomial associated to the

coefficient of each basis state by at most one. This property is easily seen to hold for Q as well –

after r queries to the Q oracle, the coefficient of each basis state can be expressed as a degree-r

polynomial in the indeterminates c(x1), . . . , c(xd)). This proves that we must have T/t > d/100,

which gives the conclusion of the theorem.

51

Combining our results, we obtain the following quantum version of the classical Ω(1
ε log 1

δ + d
ε)

bound:

Theorem 3.6.8. Any quantum (ε, δ)-PAC learning algorithm for a concept class of VC dimension

d must make at least Ω(1
ε log 1

δ + d+
√
d
ε) calls to the QEX oracle.

Chapter 4

Learning Unions of ω(1)-Dimensional

Rectangles

This chapter is based on the article [AS06], chosen as the recipient of the E. M. Gold award by the

committee of the 17th International Conference on Algorithmic Learning Theory. It will appear in

the journal Theoretical Computer Science special issue ALT 2006.

4.1 Introduction

4.1.1 Motivation

The learnability of Boolean valued functions defined over the domain [b]n = {0, 1, . . . , b−1}n has

long elicited interest in computational learning theory literature. In particular, much research has

been done on learning various classes of “unions of rectangles” over [b]n (see e.g. [BK98, CH96,

CM94, GGM94, Jac97, MW98]), where a rectangle is a conjunction of properties of the form “the

value of attribute xi lies in the range [αi, βi]”. One motivation for studying these classes is that

they are a natural analogue of classes of DNF (Disjunctive Normal Form) formulae over {0, 1}n;

for instance, it is easy to see that in the case b = 2 any union of s rectangles is simply a DNF with

s terms.

Since the description length of a point x ∈ [b]n is n log b bits, a natural goal in learning func-

tions over [b]n is to obtain algorithms which run in time poly(n log b). Throughout this chapter we

52

53

refer to such algorithms with poly(n log b) runtime as efficient algorithms. In this chapter we give

efficient algorithms which can learn several interesting classes of unions of rectangles over [b]n in

the model of uniform distribution learning with membership queries and in the uniform distribution

quantum PAC learning model with quantum examples.

4.1.2 Previous results

In a breakthrough result a decade ago, Jackson [Jac97] gave the Harmonic Sieve algorithm and

proved that it can learn any s-term DNF formula over n Boolean variables in poly(n, s) time.

In fact, Jackson showed that the algorithm can learn any s-way majority of parities in poly(n, s)

time; this is a richer set of functions which includes all s-term DNF formulae. The Harmonic Sieve

algorithm works by boosting a Fourier-based weak learning algorithm, which is a modified version

of an earlier algorithm due to Kushilevitz and Mansour [KM93].

In [Jac97] Jackson also described an extension of the Harmonic Sieve algorithm to the domain

[b]n. His main result for [b]n is an algorithm that can learn any union of s rectangles over [b]n in

poly(sb log log b, n) time; note that this runtime is poly(n, s) if and only if b is Θ(1) (and the runtime

is clearly exponential in b for any s).

There has also been substantial work on learning various classes of unions of rectangles over

[b]n in the more demanding model of exact learning from membership and equivalence queries.

Some of the subclasses of unions of rectangles which have been considered in this setting are:

Subclasses where the dimension of each rectangle is O(1): Beimel and Kushilevitz [BK98] es-

tablished an algorithm learning any union of s O(1)-dimensional rectangles using equiva-

lence queries only in poly(n, s, log b) time steps.

Subclasses where the number of rectangles is limited: In [BK98] an algorithm is given which

exactly learns any union of O(log n) many rectangles in poly(n, log b) time using member-

ship and equivalence queries. Earlier, Maass and Warmuth [MW98] gave an algorithm which

uses only equivalence queries and can learn any union of O(1) rectangles in poly(n, log b)

time.

Subclasses where the rectangles are disjoint: If no input x ∈ [b]n belongs to more than one

54

rectangle, then [BK98] can learn a union of s such rectangles in poly(n, s, log b) time with

membership and equivalence queries.

4.1.3 The techniques and results of this chapter

Because efficient learnability is established for unions ofO(log n) arbitrary dimensional rectangles

by [BK98] in a more demanding model, we are interested in achieving positive results when the

number of rectangles is strictly larger. Thus the cases we study involve at least poly(log(n log b))

and sometimes as many as poly(n log b) rectangles.

We start by describing a new variant of the Harmonic Sieve algorithm for learning functions

defined over [b]n; we call this new algorithm the Generalized Harmonic Sieve, or GHS. The key

difference between GHS and Jackson’s algorithm for [b]n is that whereas Jackson’s algorithm used

a weak learning algorithm whose runtime is poly(b), the GHS algorithm uses a poly(log b) time

weak learning algorithm described in recent work of Akavia et al. [AGS03].

The GHS algorithm we describe runs under the assumptions of either of the following learning

models:

• Learning with membership queries with respect to uniform distribution, as described in Sec-

tion 4.3.

• Learning with uniform quantum examples with respect to uniform distribution (uniform dis-

tribution quantum PAC learning), as described in Section 4.7.

We then apply GHS to learn various classes of functions defined in terms of “b-literals” (see

Section 4.2 for a precise definition; roughly speaking a b-literal is like a 1-dimensional rectangle).

We first show the following result:

• (See Theorem 4.4.1) The concept class of s-MAJORITY of r-PARITY of b-literals where

s = poly(n log b), r = O(log(n log b)
log log(n log b)) is efficiently learnable under GHS.

Learning this class has immediate applications for our goal of “learning unions of rectangles”;

in particular, it follows that

• (See Theorem 4.6.3) The concept class of s-MAJORITY of r-dimensional rectangles is

efficiently learnable under GHS provided s = poly(n log b) and r = O(log(n log b)
log log(n log b)).

55

This clearly implies efficient learnability for unions (as opposed to majorities) of s such rect-

angles as well.

We then employ a technique of restricting the domain [b]n to a much smaller set and adaptively

expanding this set as required. This approach was used in the exact learning framework by Beimel

and Kushilevitz [BK98]; by an appropriate modification we adapt the underlying idea to the uni-

form distribution membership query framework. Using this approach in conjunction with GHS we

obtain almost a quadratic improvement in the dimension of the rectangles if the number of terms is

guaranteed to be small:

• (See Theorem 4.6.5) The concept class of unions of s = poly(log(n log b)) many r-

rectangles where r = O(log2(n log b)
(log log(n log b) log log log(n log b))2

) is efficiently learnable.

Afterwards, we consider the case of disjoint rectangles (also studied by [BK98] as mentioned

above), and improve the depth of our circuits by 1 provided that the rectangles connected to the

same OR gate are disjoint:

• (See Corollary 4.6.8) The concept class of s-MAJORITY of t-OR of disjoint r-rectangles is

efficiently learnable under GHS provided s, t = poly(n log b) and r = O(log(n log b)
log log(n log b)).

Finally in Section 4.7 we explore consequences of these results towards learning with quan-

tum computation. We translate the derived positive learnability results to the uniform distribution

quantum PAC learning model, in which no access to classical or quantum membership queries is

permitted.

4.1.4 Organization of this chapter

In Section 4.2 we give preliminaries on the learning model, the classes of functions we will con-

sider, and our main technical tools of boosting and the Fourier transform. In Section 4.3 we describe

the Generalized Harmonic Sieve algorithm GHS which will be our main tool for learning unions of

rectangles. In Section 4.4 we show that s-MAJORITY of r-PARITY of b-literals is efficiently learn-

able using GHS for suitable r, s; this concept class turns out to be quite useful for learning unions

of rectangles. In Section 4.5 we improve over the results of Section 4.4 slightly if the number of

terms is small, by adaptively selecting a small subset of [b] in each dimension which is sufficient

56

for learning, and invoke GHS over the restricted domain. In Section 4.6 we explore the conse-

quences of the results in Sections 4.4 and 4.5 for the ultimate goal of learning unions of rectangles.

And finally in Section 4.7 we explore the implications of the results in the former sections towards

quantum PAC learning.

4.2 Preliminaries

4.2.1 The learning model

In this chapter, we are interested in Boolean functions defined over the domain [b]n, where [b] =

{0, 1, . . . , b − 1}. We view Boolean functions as mappings into {−1, 1} where −1 is associated

with TRUE and 1 with FALSE.

In this chapter, a concept class C is a collection of sets of Boolean functions {Cn,b : n > 0, b >

1} such that if f ∈ Cn,b then f : [b]n → {−1, 1}. Throughout this chapter we view both n and b

as asymptotic parameters, and our goal is to exhibit algorithms that learn various classes Cn,b in

poly(n, log b) time. We now describe the uniform distribution membership query learning model

that we will consider.

As defined earlier in Section 3.2.2, a membership oracle MQ(f) is an oracle which, when

queried with input x, outputs the label f(x) assigned by the target f to the input. Let f ∈ Cn,b be

an unknown member of the concept class and letA be a randomized learning algorithm which takes

as input accuracy and confidence parameters ε, δ and can invoke MQ(f). We say that A learns C

under the uniform distribution over [b]n provided that given any 0 < ε, δ < 1 and access to MQ(f),

with probability at least 1− δ A outputs an ε-approximating hypothesis h : [b]n → {−1, 1} (which

need not belong to C) such that Prx∈[b]n [f(x) = h(x)] ≥ 1− ε.

We are interested in computationally efficient learning algorithms. We say that A learns C

efficiently if for any target concept f ∈ Cn,b,

• A runs for at most poly(n, log b, 1/ε, log 1/δ) steps;

• Any hypothesis h that A produces can be evaluated in at most poly(n, log b, 1/ε, log 1/δ)

time steps at any x ∈ [b]n.

57

4.2.2 The functions we study

The reader might wonder which classes of Boolean valued functions over [b]n are interesting. In

this chapter we study classes of functions that are defined in terms of “b-literals”; these include

rectangles and unions of rectangles over [b]n as well as other richer classes. As described below,

b-literals are a natural extension of Boolean literals to the domain [b]n.

Definition 4.2.1. A function ` : [b] → {−1, 1} is a basic b-literal if for some σ ∈ {−1, 1} and

some α ≤ β with α, β ∈ [b] we have

`(x) =


σ if α ≤ x ≤ β

−σ otherwise.

A function ` : [b] → {−1, 1} is a b-literal if there exists a basic b-literal `′ and some fixed z ∈ [b],

gcd(z, b) = 1 such that for all x ∈ [b] we have `(x) = `′(xz mod b).

Basic b-literals are the most natural extension of Boolean literals to the domain [b]n. General

b-literals (not necessarily basic) were previously studied in [AGS03] and are also quite natural;

for example, if b is odd then the least significant bit function lsb(x) : [b] → {−1, 1} (defined by

lsb(x) = −1 if and only if x is even) is a b-literal.

Definition 4.2.2. A function f : [b]n → {−1, 1} is a k-rectangle if it is an AND of k basic b-

literals `1, . . . , `k over k distinct variables xi1 , . . . , xik . If f is a k-rectangle for some k then we

may simply say that f is a rectangle. A union of s rectangles R1, . . . , Rs is a function of the form

f(x) = ORsi=1Ri(x).

The class of unions of s rectangles over [b]n is a natural generalization of the class of s-term

DNF over {0, 1}n. Similarly MAJORITY of PARITY of basic b-literals generalizes the class of

MAJORITY of PARITY of Boolean literals, a class which has been the subject of much research in

learning theory and complexity theory (see e.g. [Jac97, Bru90, KS04]).

If G is a logic gate with potentially unbounded fan-in (e.g. MAJORITY, PARITY, AND, etc.)

we write “s-G” to indicate that the fan-in of G is restricted to be at most s. Thus, for example, an

“s-MAJORITY of r-PARITY of b-literals” is a MAJORITY of at most s functions g1, . . . , gs, each

58

of which is a PARITY of at most r many b-literals. We will further assume that any two b-literals

which are inputs to the same gate depend on different variables. This is a natural restriction to

impose in light of our ultimate goal of learning unions of rectangles. Although our results hold

without this assumption, it provides simplicity in the presentation.

4.2.3 Harmonic analysis of functions over [b]n

We will make use of the Fourier expansion of complex valued functions over [b]n.

Consider f, g : [b]n → C endowed with the inner product 〈f, g〉 = E[fg] and induced norm

‖f‖ =
√
〈f, f〉. Let ωb = e

2πi
b and for each α = (α1, . . . , αn) ∈ [b]n, let χα : [b]n → C be

defined as

χα(x1, . . . , xn) = ωα1x1+···+αnxn
b .

Let B denote the set of functions B = {χα : α ∈ [b]n}. It is easy to verify the following properties:

• Elements in B are normal: for each α = (α1, . . . , αn) ∈ [b]n, we have ‖χα‖ = 1.

• Elements in B are orthogonal: For α, β ∈ [b]n, we have 〈χα, χβ〉 =

 1 if α = β

0 if α 6= β
.

• B constitutes an orthonormal basis for all functions {f : [b]n → C} considered as a vector

space over C. Thus every f : [b]n → C can be expressed uniquely as:

f(x) =
∑
α

f̂(α)χα(x)

which we refer to as the Fourier expansion or Fourier transform of f .

The values {f̂(α) : α ∈ [b]n} are called the Fourier coefficients or the Fourier spectrum of f . As is

well known, Parseval’s Identity relates the values of the coefficients to the values of the function:

Lemma 4.2.3 (Parseval’s Identity). For any f : [b]n → C, we have
∑

α |f̂(α)|2 = E[|f |2].

We write L1(f) to denote
∑

α |f̂(α)|.

59

4.2.4 Additional tools: weak hypotheses and boosting

Definition 4.2.4. Let f : [b]n → {−1, 1} and D be a probability distribution over [b]n. A function

g : [b]n → R is said to be a weak hypothesis for f with advantage γ under D if ED[fg] ≥ γ.

The first boosting algorithm was described by Schapire [Sch90] in 1990; since then boosting

has been intensively studied (see [FS99] for an overview). The basic idea is that by combining

a sequence of weak hypotheses h1, h2, . . . (the i-th of which has advantage γ with respect to a

carefully chosen distribution Di) it is possible to obtain a high accuracy final hypothesis h which

satisfies Pr[h(x) = f(x)] ≥ 1− ε. The following theorem gives a precise statement of the perfor-

mance guarantees of a particular boosting algorithm, which we call Algorithm B, due to Freund.

Many similar statements are now known about a range of different boosting algorithms but this is

sufficient for our purposes.

Theorem 4.2.5 (Boosting Algorithm [Fre95]). Suppose that Algorithm B is given:

• 0 < ε, δ < 1, and membership query access MQ(f) to f : [b]n → {−1, 1};

• access to an algorithm WL which has the following property: given a value δ′ and access to

MQ(f) and to EX(f,D) (the latter is an example oracle which generates random examples

from [b]n drawn with respect to distribution D), it constructs a weak hypothesis for f with

advantage γ under D with probability at least 1−δ′ in time polynomial in n, log b, log(1/δ′).

Then Algorithm B behaves as follows:

• It runs for S = O(log(1/ε)/γ2) stages and runs in total time polynomial in n, log b, ε−1,

γ−1, log(δ−1).

• At each stage 1 ≤ j ≤ S it constructs a distribution Dj such that L∞(Dj) < poly(ε−1)/bn,

and simulates EX(f,Dj) for WL in stage j. Moreover, there is a “pseudo-distribution” D̃j

satisfying D̃j(x) = cDj(x) for all x (where c ∈ [1/2, 3/2] is some fixed value) such that

D̃j(x) can be computed in time polynomial in n log b for each x ∈ [b]n.

• It outputs a final hypothesis h = sgn(h1 + h2 + . . . + hS) which ε-approximates f under

the uniform distribution with probability 1− δ; here hj is the output of WL at stage j invoked

with simulated access to EX(f,Dj).

60

We will sometimes informally refer to distributions D which satisfy the bound L∞(D) <

poly(ε−1)
bn as smooth distributions.

In order to use boosting, it must be the case that there exists a suitable weak hypothesis with

advantage γ. The “discriminator lemma” of Hajnal et al. [HMP+93] (see also [Pis81]) can often

be used to assert that the desired weak hypothesis exists:

Lemma 4.2.6 (The Discriminator Lemma [HMP+93, Pis81]). Let H be a class of {1,−1}-valued

functions over [b]n and let f : [b]n → {−1, 1} be expressible as f = MAJORITY(h1, . . . , hs) where

each hi ∈ H and h1(x) + . . .+ hs(x) 6= 0 for all x. Then for any distribution D over [b]n there is

some hi such that |ED[fhi]| ≥ 1/s.

4.3 The Generalized Harmonic Sieve algorithm

In this section our goal is to describe a variant of Jackson’s Harmonic Sieve Algorithm and show

that under suitable conditions it can efficiently learn certain functions f : [b]n → {−1, 1}. As

mentioned earlier, our aim is to attain poly(log b) runtime dependence on b and consequently obtain

efficient algorithms as described in Section 4.2.1. This goal precludes using Jackson’s original

Harmonic Sieve variant for [b]n since the runtime of his weak learner depends polynomially rather

than polylogarithmically on b (see [Jac97, Lemma 15]).

As we describe below, this poly(log b) runtime can be achieved by modifying the Harmonic

Sieve over [b]n to use a weak learner due to Akavia et al. [AGS03] which is more efficient than

Jackson’s weak learner. We shall call the resulting algorithm “The Generalized Harmonic Sieve”

algorithm, or GHS for short.

Recall that in the Harmonic Sieve over the Boolean domain {−1, 1}n, the weak hypotheses

used are simply the Fourier basis elements over {−1, 1}n, which correspond to the Boolean-valued

parity functions. For [b]n, we will use the real component of the complex-valued Fourier basis

elements {χα, α ∈ [b]n} (as defined in Section 4.2.3) as our weak hypotheses.

The following theorem of Akavia et al. [AGS03, Theorem 5] will play a crucial role towards

construction of the GHS algorithm.

Theorem 4.3.1 (See [AGS03]). There is a learning algorithm that, given membership query access

61

to f : [b]n → C, 0 < γ and 0 < δ < 1, outputs a list L of indices such that with probability at least

1 − δ, we have {α : |f̂(α)| > γ} ⊆ L and |f̂(β)| ≥ γ
2 for every β ∈ L. The running time of the

algorithm is polynomial in n, log b, ‖f‖∞, γ−1, log(δ−1).

Lemma 4.3.2 (Construction of the weak hypothesis). Given

• Membership query access MQ(f) to f : [b]n → {−1, 1};

• A smooth distribution D; more precisely, access to an algorithm computing D̃(x) in time

polynomial in n, log b for each x ∈ [b]n. Here D̃ is a “pseudo-distribution” for D as in

Theorem 4.2.5, i.e. there is a value c ∈ [1/2, 3/2] such that D̃(x) = cD(x) for all x.

• A value 0 < γ < 1/2 such that there exists an element of the Fourier basis χτ satisfying

|ED[fχτ]| > γ,

there is an algorithm that outputs a weak hypothesis for f with advantage γ/4 under D with

probability 1− δ and runs in time polynomial in n, log b, ε−1, γ−1, log(δ−1).

Proof. Let f∗(x) = bnD̃(x)f(x). Observe that

• Since D is smooth, ‖f∗‖∞ < poly(ε−1).

• For any α ∈ [b]n, f̂∗(α) = E[f∗χα] = 1
bn

∑
x∈[b]n b

nD̃(x)f(x)χα(x) = ED[cfχα].

Therefore one can invoke the algorithm of Theorem 4.3.1 over f∗(x) by simulating MQ(f∗) via

MQ(f), each time with poly(n, log b) time overhead, and obtain a list L of indices. Note that since

we are guaranteed that there exists an index τ satisfying |ED[fχτ]| > γ implying |f̂∗(τ)| ≥ cγ, we

can invoke Theorem 4.3.1 in such a way that for any index β in its output, we know |f̂∗(β)| ≥ cγ/2.

It is easy to see that the algorithm runs in the desired time bound and outputs a nonempty list

L. Let β be any element of L. Because f̂∗(β) = E[bnD̃(x)f(x)χβ(x)], one can approximate
ED[fχβ]
|ED[fχβ]| = f̂∗(β)

|f̂∗(β)|
= eiθ using uniformly drawn random examples. Let eiθ

′
be the approximation

thus obtained.

By assumption we know that for random x ∈ [b]n, the random variable (bnD̃(x)f(x)χβ(x))

always takes a value whose magnitude is O(poly(ε−1)) in absolute value. Using a straightforward

62

Chernoff bound argument, this implies that |θ − θ′| can be made smaller than any constant using

poly(n, log b, ε−1) time and random examples.

Now observe that we have

ED[fχβ] = eiθ|ED[fχβ]| ⇒ ED[feiθχβ] = |ED[fχβ]| = c−1|f̂∗(β)| ≥ γ/2.

Therefore for a sufficiently small value of |θ − θ′|, we have

ED[f<{eiθ′χβ}] = <{ED[feiθ′χβ]} = <{ei(θ−θ′) ED[feiθχβ]︸ ︷︷ ︸
real valued and ≥ γ/2

} ≥ γ/4.

We conclude that <{eiθ′χβ} constitutes a weak hypothesis for f with advantage γ/4 under D

with high probability.

Rephrasing the statement of Lemma 4.3.2, now we know: As long as for any function f in the

concept class it is guaranteed that under any smooth distribution D there is a Fourier basis element

χβ that has non-negligible correlation with f (i.e. |ED[fχα]| > γ), then it is possible to efficiently

identify and use such a Fourier basis element to construct a weak hypothesis.

Now one can invoke Algorithm B from Theorem 4.2.5 as in Jackson’s original Harmonic Sieve:

At stage j, we have a distribution Dj over [b]n for which L∞(Dj) < poly(ε−1)/bn. Thus one can

pass the values of Dj to the algorithm in Lemma 4.3.2 and use this algorithm as WL in Algorithm

B to obtain the weak hypothesis at each stage. Repeating this idea for every stage and combining

the weak hypotheses generated for all the stages as described by Theorem 4.2.5, we have the GHS

algorithm:

Corollary 4.3.3 (The Generalized Harmonic Sieve). Let C be a concept class. Suppose that for

any concept f ∈ Cn,b and any distribution D over [b]n with L∞(D) < poly(ε−1)/bn there

exists a Fourier basis element χα such that |ED[fχα]| ≥ γ. Then C can be learned in time

poly(n, log b, ε−1, γ−1).

63

4.4 Learning MAJORITY of PARITY using GHS

In this section we identify classes of functions which can be learned efficiently using the GHS

algorithm. Our main result is the following:

Theorem 4.4.1. The concept class C consisting of s-MAJORITY of r-PARITY of b-literals where

s = poly(n log b), r = O(log(n log b)
log log(n log b)) is efficiently learnable using the GHS algorithm.

To prove Theorem 4.4.1, we show that for any concept f ∈ C and under any smooth distribution

there must be some Fourier basis element which has high correlation with f ; this is the essential

step which lets us apply the Generalized Harmonic Sieve. We prove this in Section 4.4.2. In

Section 4.4.3 we give an alternate argument which yields a Theorem 4.4.1 analogue but with a

slightly different bound on r, namely r = O(log(n log b)
log log b).

4.4.1 Setting the stage

For ease of notation we will write abs(α) to denote min{α, b − α}. We will use the following

simple lemma from [AGS03]:

Lemma 4.4.2 (See [AGS03]). For all 0 ≤ ` ≤ b, we have |
∑`−1

y=0 ω
αy
b | < b/abs(α).

Corollary 4.4.3. Let f : [b]→ {−1, 1} be a basic b-literal, then

• If α = 0, |f̂(α)| < 1.

• If α 6= 0, |f̂(α)| < 2
abs(α) .

Proof. The first inequality follows immediately from Lemma 4.2.3 (Parseval’s Identity) because f

is {1,−1}-valued. For the latter, note that

|f̂(α)| = |E[fχα]| = 1
b

∣∣∣∣∣∣
∑

x∈f−1(1)

χα(x)−
∑

x∈f−1(−1)

χα(x)

∣∣∣∣∣∣ ≤ 1
b

∣∣∣∣∣∣
∑

x∈f−1(1)

χα(x)

∣∣∣∣∣∣+ 1
b

∣∣∣∣∣∣
∑

x∈f−1(−1)

χα(x)

∣∣∣∣∣∣
where the inequality is simply the triangle inequality. It is easy to see that each of the sums on

the R.H.S. above equals 1
b |ω

αc
b | |

∑`−1
y=0 ω

αy
b | =

1
b |

∑`−1
y=0 ω

αy
b | for some suitable c and ` ≤ b, and

hence Lemma 4.4.2 gives the desired result.

64

The following easy lemma is useful for relating the Fourier transform of a b-literal to the cor-

responding basic b-literal:

Lemma 4.4.4. For f, g : [b] → C such that g(x) = f(xz) where gcd(z, b) = 1, we have ĝ(α) =

f̂(αz−1).

Proof.

ĝ(α) = Ex[g(x)χα(x)] = Ex[f(xz)χα(x)] = Exz−1 [f(x)χα(xz−1)]

= Exz−1 [f(x)χαz−1(x)] = Ex[f(x)χαz−1(x)] = f̂(αz−1).

A natural way to approximate a b-literal is by truncating its Fourier representation. We make

the following definition:

Definition 4.4.5. Let k be a positive integer. For f : [b] → {−1, 1} a basic b-literal, the k-

restriction of f is f̃ : [b]→ C,

f̃(x) =
∑

abs(α)≤k

f̂(α)χα(x).

More generally, for f : [b] → {−1, 1} a b-literal (so f(x) = f ′(xz) where f ′ is a basic b-literal)

the k-restriction of f is f̃ : [b]→ C,

f̃(x) =
∑

abs(αz−1)≤k

f̂(α)χα(x) =
∑

abs(β)≤k

f̂ ′(β)χβ(x).

4.4.2 There exist highly correlated Fourier basis elements for functions in C under

smooth distributions

In this section we show that given any f ∈ C and any smooth distribution D, some Fourier basis

element must have high correlation with f . We begin by bounding the error of the k-restriction of

a basic b-literal:

65

Lemma 4.4.6. For f : [b]→ {−1, 1} a b-literal and f̃ the k-restriction of f , we have E[|f− f̃ |2] =

O(1/k).

Proof. Without loss of generality assume f to be a basic b-literal. By an immediate application of

Lemma 4.2.3 (Parseval’s Identity) we obtain:

E[|f − f̃ |2] =
∑

abs(α)>k

|f̂(α)|2 =︸︷︷︸
by Corollary 4.4.3

∑
α>k

O(1)/α2 = O(1/k).

Now suppose that f is an r-PARITY of b-literals f1, . . . , fr. Since PARITY corresponds to

multiplication over the domain {−1, 1}, this means that f =
∏r
i=1 fi. It is natural to approximate

f by the product of the k-restrictions
∏r
i=1 f̃i. The following lemma bounds the error of this

approximation:

Lemma 4.4.7. For i = 1, . . . , r, let fi : [b]→ {−1, 1} be a b-literal and let f̃i be its k-restriction.

Then

E[|f1(x1)f2(x2) . . . fr(xr)− f̃1(x1)f̃2(x2) . . . f̃r(xr)|] < O(1) · (e
O(1)r√

k − 1).

Proof. First note that by the non-negativity of variance and Lemma 4.4.6, we have that for each

i = 1, . . . , r:

Exi [|fi(xi)− f̃i(xi)|] ≤
√

Exi [|fi(xi)− f̃i(xi)|2] = O(1/
√
k).

Therefore we also have for each i = 1, . . . , r:

Exi [|f̃i(xi)|] < Exi [|f̃i(xi)− fi(xi)|]︸ ︷︷ ︸
<O(1√

k
)

+Exi [|fi(xi)|]︸ ︷︷ ︸
=1

= 1 +
O(1)√
k
.

66

For any (x1, . . . , xr) we can bound the difference in the lemma as follows:

|f1(x1) . . . fr(xr)− f̃1(x1) . . . f̃r(xr)|

≤ |f1(x1) . . . fr(xr)− f1(x1) . . . fr−1(xr−1)f̃r(xr)|

+ |f1(x1) . . . fr−1(xr−1)f̃r(xr)− f̃1(x1) . . . f̃r(xr)|

≤ |f1(x1) . . . fr−1(xr−1)|︸ ︷︷ ︸
=1

|fr(xr)− f̃r(xr)|+ |f̃r(xr)||f1(x1) . . . fr−1(xr−1)− f̃1(x1) . . . f̃r−1(xr−1)|

Therefore we can express the expectation in question as follows:

E(x1,...,xr)∈[b]r [|f1(x1)f2(x2) . . . fr(xr)− f̃1(x1)f̃2(x2) . . . f̃r(xr)|]

≤ E
xr

[|fr(xr)− f̃r(xr)|]︸ ︷︷ ︸
=O(1√

k
)

+ E
xr

[|f̃r(xr)|]︸ ︷︷ ︸
=1+

O(1)√
k

·E(x1,...,xr−1)[|f1(x1) . . . fr−1(xr−1)− f̃1(x1) . . . f̃r−1(xr−1)|]

and repeat this argument successively until the base case Ex1 [|f1(x1) − f̃1(x1)|] ≤ O(1√
k
) is

reached. Thus for some K = O(1), 1 < L = 1 + O(1)√
k

, we have

E[|f1(x1) . . . fr(xr)− f̃1(x1) . . . f̃r(xr)|] ≤
K

∑r−1
i=0 L

i

√
k

=
K(Lr − 1)
(L− 1)

√
k

≤ O(1) · ((1 +
O(1)√
k

)r − 1) < O(1) · (e
O(1)r√

k − 1).

from which the lemma follows.

Now we are ready for the main theorem asserting the existence (under suitable conditions) of a

highly correlated Fourier basis element. The basic approach of the following proof is reminiscent

of the main technical lemma from [JKS02].

Theorem 4.4.8. Let τ be a parameter to be specified later and C be the concept class consisting

of s-MAJORITY of r-PARITY of b-literals where s = poly(τ) and r = O(log(τ)
log log(τ)). Then for any

f ∈ Cn,b and any distribution D over [b]n with L∞(D) = poly(τ)/bn, there exists a Fourier basis

element χα such that

|ED[fχα]| > Ω(1/poly(τ)).

Proof. Assume f is a MAJORITY of h1, . . . , hs each of which is a r-PARITY of b-literals. Then

67

Lemma 4.2.6 implies that there exists hi such that |ED[fhi]| ≥ 1/s. Let hi be PARITY of the

b-literals `1, . . . , `r.

Since s and bn · L∞(D) are both at most poly(τ) and r = O(log(τ)
log log(τ)), Lemma 4.4.7 implies

that there are absolute constants C1, C2 such that if we consider the k-restrictions ˜̀
1, . . . , ˜̀r of

`1, . . . , `r for k = C1 · τC2 , we will have

E[|hi −
r∏
j=1

˜̀
j |] ≤ 1/(2sbnL∞(D))

where the expectation on the left hand side is with respect to the uniform distribution over [b]n.

This in turn implies that

ED[|hi −
r∏
j=1

˜̀
j |] ≤ 1/2s.

Let us write h′ to denote
∏r
j=1

˜̀
j . We then have

|ED[fh′]| ≥ |ED[fhi]| − |ED[f(hi − h′)]|

≥ |ED[fhi]| −ED[|f(hi − h′)|] = |ED[fhi]| −ED[|hi − h′|]

≥ 1/s− 1/2s = 1/2s.

Now observe that we additionally have

|ED[fh′]| = |ED[f
∑
α

ĥ′(α)χα]| = |
∑
α

ĥ′(α)ED[fχα]| ≤ L1(h′) max
α
|ED[fχα]|

Moreover, for each j = 1, . . . , r we have the following (where we write `′j to denote the basic

b-literal associated with the b-literal `j):

L1(˜̀j) =
∑

abs(α)≤k

|̂̀′j(α)| =︸︷︷︸
by Corollary 4.4.3

1 +
k∑

α=1

O(1)/α = O(log k).

Therefore, for some absolute constant c > 0 we have L1(h′) ≤
∏r
j=1 L1(˜̀j) ≤ (c log k)r, where

the first inequality holds since the L1 norm of a product is at most the product of the L1 norms.

68

Combining inequalities, we obtain

max
α
|ED[fχα]| ≥ 1/(2s(c log k)r) = Ω(1/poly(τ))

which is the desired result.

Since we are interested in algorithms with runtime poly(n, log b, ε−1), setting τ = nε−1 log b

in Theorem 4.4.8 and combining its result with Corollary 4.3.3, gives rise to Theorem 4.4.1.

4.4.3 The second approach

A different analysis, similar to that which Jackson uses in the proof of [Jac97, Fact 14], gives us an

alternate bound to Theorem 4.4.8:

Lemma 4.4.9. Let C be the concept class consisting of s-MAJORITY of r-PARITY of b-literals.

Then for any f ∈ Cn,b and any distribution D over [b]n, there exists a Fourier basis element χα

such that

|ED[fχα]| = Ω(1/s(log b)r).

Proof. Assume f is a MAJORITY of h1, . . . , hs each of which is a r-PARITY of b-literals. Then

Lemma 4.2.6 implies that there exists hi such that |ED[fhi]| ≥ 1/s. Let hi be PARITY of the

b-literals `1, . . . , `r. Now observe:

1/s ≤ |ED[fhi]| = |ED[fhi]| = |ED[f
∑
α

ĥi(α)χα]|

= |
∑
α

ĥi(α)ED[fχα]|

≤ L1(hi) max
α
|ED[fχα]|

Also note that for j = 1, . . . , r we have the following (where as before we write `′j to denote the

basic b-literal associated with the b-literal `j):

L1(`j) =︸︷︷︸
by Lemma 4.4.4

∑
α

| ˆ̀j(α)| =︸︷︷︸
by Corollary 4.4.3

1 +
b−1∑
α=1

O(1)/α = O(log b).

69

Therefore for some constant c > 0 we have L1(hi) ≤
∏r
j=1 L1(`j) = O((log b)r), from which we

obtain:

max
α
|ED[fχα]| = Ω(1/s(log b)r)

Combining this result with that of Corollary 4.3.3 we obtain the following result:

Theorem 4.4.10. The concept class C consisting of s-MAJORITY of r-PARITY of b-literals can be

learned in time poly(s, n, (log b)r) using the GHS algorithm.

As an immediate corollary we obtain the following close analogue of Theorem 4.4.1:

Theorem 4.4.11. The concept class C consisting of s-MAJORITY of r-PARITY of b-literals where

s = poly(n log b), r = O(log(n log b)
log log b) is efficiently learnable using the GHS algorithm.

4.5 Locating sensitive elements and learning with GHS on a restricted

grid

In this section we consider an extension of the GHS algorithm which lets us achieve slightly better

bounds when we are dealing only with basic b-literals. Following an idea from [BK98], the new

algorithm works by identifying a subset of “sensitive” elements from [b] for each of the n dimen-

sions. Although we will be invoking Theorem 4.4.11 inside our algorithm, an important feature of

the developed algorithm is that it could be built on top of any other uniform distribution learning

algorithm for rectangles in order to reduce its complexity.

Definition 4.5.1 (See [BK98]). A value σ ∈ [b] is called i-sensitive with respect to f : [b]n →

{−1, 1} if there exist values c1, c2, . . . , ci−1, ci+1, . . . , cn ∈ [b] such that

f(c1, . . . , ci−1, σ − 1, ci+1, . . . , cn) 6= f(c1, . . . , ci−1, σ, ci+1, . . . , cn).

A value σ is called sensitive with respect to f if σ is i-sensitive for some i. If there is no i-sensitive

value with respect to f , we say index i is trivial.

70

The main idea is to run GHS over a restricted subset of the original domain [b]n, which is

the grid formed by the sensitive values and a few more additional values, and therefore lower the

algorithm’s complexity.

Definition 4.5.2. A grid in [b]n is a set S = L1 × L2 × · · · × Ln with 0 ∈ Li ⊆ [b] for each i. We

refer to the elements of S as corners. The region covered by a corner (x1, . . . , xn) ∈ S is defined

to be the set {(y1, . . . , yn) ∈ [b]n : ∀i, xi ≤ yi < dxie} where dxie denotes the smallest value in

Li which is larger than xi (by convention dxie := b if no such value exists). The area covered by

the corner (x1, . . . , xn) ∈ S is therefore defined to be
∏n
i=1(dxie−xi). A refinement of S is a grid

in [b]n of the form L′1 × L′2 × · · · × L′n where each Li ⊆ L′i.

Lemma 4.5.3. Let S be a grid L1×L2×· · ·×Ln in [b]n such that each |Li| ≤ `. Let IS denote the

set of indices for which Li 6= {0}. If |IS| ≤ κ, then S admits a refinement S′ = L′1×L′2×· · ·×L′n

such that

1. All of the sets L′i which contain more than one element have the same number of elements:

Lmax, which is at most `+ Cκ`, where C = b
κ` ·

1
bb/4κ`c ≥ 4.

2. Given a list of the sets L1, . . . , Ln as input, a list of the sets L′1, . . . , L
′
n can be generated by

an algorithm with a running time of O(nκ` log b).

3. L′i = {0} whenever Li = {0}.

4. Any ε fraction of the corners in S′ cover a combined area of at most 2εbn.

Proof. Consider Algorithm 7 which, given S = L1 × L2 × · · · × Ln, generates S′.

The purpose of the code between lines 19–23 is to make every L′i 6= {0} contain equal number

of elements. Therefore the algorithm keeps track of the number of elements in the largest L′i in a

variable called Lmax and eventually adds more (arbitrary) elements to those L′i 6= {0} which have

fewer elements.

It is clear that the algorithm satisfies Property 3 above.

Now consider the state of Algorithm 7 at line 18. Let i be such that |L′i| = Lmax. Clearly L′i

includes the elements in Li which are at most ` many. Moreover every new element added to L′i in

the loop spanning lines 9-12 covers a section of [b] of width τ , and thus b/τ = Cκ` elements can

71

Algorithm 7 Computing a refinement of the grid S with the desired properties.
1: Lmax ← 0.
2: for all 1 ≤ i ≤ n do
3: if Li = {0} then
4: L′i ← {0}.
5: else
6: Consider Li = {xi0, xi1 . . . , xi`−1}, where xi0 < xi1 < · · · < xi`−1 (Also let xi` = b).
7: L′i ← Li.
8: τ ← bb/4κ`c.
9: for all r = 0, . . . , `− 1 do

10: if |xir+1 − xir| > τ then
11: L′i ← L′i ∪ {xir + τ, xir + 2τ, . . .} (up to and including the largest xir + j · τ which

is less than xir+1)
12: end if
13: end for
14: if |L′i| > Lmax then
15: Lmax ← |L′i|.
16: end if
17: end if
18: end for
19: for all 1 ≤ i ≤ n with |L′i| > 1 do
20: while (|L′i| < Lmax) do
21: L′i ← L′i ∪ {an arbitrary element from [b]}.
22: end while
23: end for
24: S′ ← L′1 × L′2 × · · · × L′n.

be added. Thus Lmax ≤ `+ Cκ`. At the end of the algorithm every L′i contains either 1 element

(which is {0}) or Lmax elements. This gives us Property 1. Note that C ≥ 4 by construction.

It is easy to verify that it satisfies Property 2 as well (the log b factor in the runtime is present

because the algorithm works with (log b)-bit integers).

Property 1 and the bound |IS| ≤ κ together give that the number of corners in S is at most

(` + Cκ`)κ. It is easy to see from the algorithm that the area covered by each corner in S′ is at

most bn

(Cκ`)κ (again using the bound on |IS|). Therefore any ε fraction of the corners in S′ cover an

area of at most:

ε(`+ Cκ`)κ × bn

(Cκ`)κ
= ε(1 +

1
Cκ

)
κ

× bn <︸︷︷︸
C≥4

e1/3εbn < 2εbn.

This gives Property 4.

72

The following lemma is easy and useful; similar statements are given in [BK98]. Note that the

lemma critically relies on the b-literals being basic.

Lemma 4.5.4. Let f : [b]n → {−1, 1} be expressed as an s-MAJORITY of PARITY of basic b-

literals. Then for each index 1 ≤ i ≤ n, there are at most 2s i-sensitive values with respect to

f .

Proof. A literal ` on variable xi induces two i-sensitive values. The lemma follows directly from

our assumption (see the end of Section 4.2.2) that for each variable xi, each of the s PARITY gates

has no more than one incoming literal which depends on xi.

Algorithm 8 is our extension of the GHS algorithm. It essentially works by repeatedly running

GHS on the target function f but restricted to a small (relative to [b]n) grid. To upper bound the

number of steps in each of these invocations we will be referring to the result of Theorem 4.4.11.

After each execution of GHS, the hypothesis defined over the grid is extended to [b]n in a natural

way and is tested for ε-accuracy. If h is not ε-accurate, then a point where h is incorrect is used

to identify a new sensitive value and this value is used to refine the grid for the next iteration. The

bound on the number of sensitive values from Lemma 4.5.4 lets us bound the number of iterations.

Our theorem about Algorithm 8’s performance is the following:

Theorem 4.5.5. Let concept class C consist of s-MAJORITY of r-PARITY of basic b-literals such

that s = poly(n log b) and each f ∈ Cn,b has at most κ(n, b) non-trivial indices and at most `(n, b)

i-sensitive values for each i = 1, . . . , n. Then C is efficiently learnable if r = O(log(n log b)
log log κ`).

Proof. We assume b = ω(κ`) without loss of generality. Otherwise one immediately obtains the

result with a direct application of GHS through Theorem 4.4.11.

We clearly have κ ≤ n and ` ≤ 2s. By Lemma 4.5.4 there are at most κ` = O(ns) sensitive

values. We will show that the algorithm finds a new sensitive value at each iteration and terminates

before all sensitive values are found. Therefore the number of iterations will be upper bounded by

O(ns). We will also show that each iteration runs in poly(n, log b, ε−1) steps. This will establish

the desired result.

Let’s first establish that step 6 takes at most poly(n, log b, ε−1) steps. To observe this it is

sufficient to combine the following facts:

73

Algorithm 8 An improved algorithm for learning MAJORITY of PARITY of basic b-literals.
1: L1 ← {0}, L2 ← {0}, . . . , Ln ← {0}.
2: loop
3: S← L1 × L2 × · · · × Ln.
4: S′ ← the output of refinement algorithm with input S.
5: One can express S′ = L′1×L′2× · · · ×L′n. If Li 6= {0} then L′i = {xi0, xi1 . . . , xi(Lmax−1)}.

Let xi0 < xi1 < · · · < xit−1 and let τi : ZLmax → L′i be the translation function such that
τi(j) = xij . If Li = L′i = {0} then τi is the function simply mapping 0 to 0.

6: Invoke GHS over f |S′ with accuracy ε/8. This is done by simulating MQ(f |S′(x1, . . . , xn))
with MQ(f(τ1(x1), τ2(x2), . . . , τn(xn))). Let the output of the algorithm be g.

7: Let h be a hypothesis function over [b]n such that h(x1, . . . , xn) =
g(τ−1

1 (bx1c), . . . , τ−1
n (bxnc)) (bxic denotes largest value in L′i less than or equal to

xi).
8: if h ε-approximates f then
9: Output h and terminate.

10: end if
11: Perform random membership queries until an element (x1, . . . , xn) ∈ [b]n is found such

that f(bx1c, . . . , bxnc) 6= f(x1, . . . , xn).
12: Find an index 1 ≤ i ≤ n such that

f(bx1c, . . . , bxi−1c, xi, . . . , xn) 6= f(bx1c, . . . , bxi−1c, bxic, xi+1, . . . , xn)

This requires O(log n) membership queries using binary search.
13: Find a value σ such that bxic+ 1 ≤ σ ≤ xi and

f(bx1c, . . . , bxi−1c, σ − 1, xi+1, . . . , xn) 6= f(bx1c, . . . , bxi−1c, σ, xi+1, . . . , xn)

This requires O(log b) membership queries using binary search.
14: Li ← Li ∪ {σ}.
15: end loop

• Due to the construction of Algorithm 7 for every non-trivial index i of f , L′i has fixed car-

dinality = Lmax. Therefore GHS could be invoked over the restriction of f onto the grid,

f |S′ , without any trouble.

• If f is s-MAJORITY of r-PARITY of basic b-literals, then the function obtained by restricting

it onto the grid: f |S′ could be expressed as t-MAJORITY of u-PARITY of basic L-literals

where t ≤ s, u ≤ r and L ≤ O(κ`) (due to the 1st property of the refinement).

• Due to Theorem 4.4.11, running GHS over a grid with alphabet sizeO(κ`) in each non-trivial

index takes poly(n, log b, ε−1) time if the dimension of the rectangles are r = O(log(n log b)
log log κ`).

The key idea here is that running GHS over this κ`-size alphabet lets us replace the “b” in

74

Theorem 4.4.11 with “κ`”.

To check whether if h ε-approximates f at step 8, we may draw O(1/ε) · log(1/δ) uniform

random examples and use the membership oracle to empirically estimate h’s accuracy on these

examples. Standard bounds on sampling show that if the true error rate of h is less than (say) ε/2,

then the empirical error rate on such a sample will be less than ε with probability 1 − δ. Observe

that if all the sensitive values are recovered by the algorithm, h will ε-approximate f with high

probability. Indeed, since g (ε/8)-approximates f |S′ , Property 4 of the refinement guarantees that

misclassifying the function at ε/8 fraction of the corners could at most incur an overall error of

2ε/8 = ε/4. This is because when all the sensitive elements are recovered, for every corner in S′, h

either agrees with f or disagrees with f in the entire region covered by that corner. Thus h will be

an ε/4 approximator to f with high probability. This establishes that the algorithm must terminate

within O(ns) iterations of the outer loop.

Locating another sensitive value occurs at steps 11, 12 and 13. Note that h is not an ε-

approximator to f because the algorithm moved beyond step 8. Even if we were to correct all

the mistakes in g this would alter at most ε/8 fraction of the corners in the grid S′ and therefore ε/4

fraction of the values in h – again due to the 4th property of the refinement and the way h is gen-

erated. Therefore for at least 3ε/4 fraction of the domain we ought to have f(bx1c, . . . , bxnc) 6=

f(x1, . . . , xn) where bxic denotes largest value in L′i less than or equal to xi. Thus the algorithm

requires at most O(1/ε) random queries to find such an input in step 11.

Thus we have observed that steps 6, 8, 11, 12, 13 take at most poly(n, log b, ε−1) steps. There-

fore each iteration of Algorithm 8 runs in poly(n, log b, ε−1) steps as claimed.

We note that we have been somewhat cavalier in our treatment of the failure probabilities for

various events (such as the possibility of getting an inaccurate estimate of h’s error rate in step 9,

or not finding a suitable element (x1, . . . , xn) soon enough in step 11). A standard analysis shows

that all these failure probabilities can be made suitably small so that the overall failure probability

is at most δ within the claimed runtime.

75

4.6 Applications to learning unions of rectangles

In this section we apply the results we have obtained in Sections 4.4 and 4.5 to obtain results on

learning unions of rectangles and related classes.

4.6.1 Learning majorities and unions of many low-dimensional rectangles

The following lemma will let us apply our algorithm for learning MAJORITY of PARITY of b-

literals to learn MAJORITY of AND of b-literals:

Lemma 4.6.1. Let f : {−1, 1}n → {−1, 1} be expressible as an s-MAJORITY of r-AND of

Boolean literals. Then f is also expressible as a O(ns2)-MAJORITY of r-PARITY of Boolean

literals.

We note that Krause and Pudlák gave a related but slightly weaker bound in [KP98]; they used a

probabilistic argument to show that any s-MAJORITY of AND of Boolean literals can be expressed

as an O(n2s4)-MAJORITY of PARITY. Our boosting-based argument below closely follows that of

[Jac97, Corollary 13].

Proof of Lemma 4.6.1: Let f be the MAJORITY of h1, . . . , hs where each hi is an AND gate

of fan-in r. By Lemma 4.2.6, given any distribution D there is some AND function hj such that

|ED[fhj]| ≥ 1/s. It is not hard to show that the L1-norm of any AND function is at most 4 (see,

e.g., [KM93, Lemma 5.1] for a somewhat more general result), so we have L1(hj) ≤ 4. Now the

argument from the proof of Lemma 4.4.9 shows that there must be some parity function χa such

that |ED[fχa]| ≥ 1/4s, where the variables in χa are a subset of the variables in hj – and thus χa

is a parity of at most r literals. Consequently, we can apply the boosting algorithm of [Fre95] stated

in Theorem 4.2.5, choosing the weak hypothesis to be a PARITY with fan-in at most r at each stage

of boosting, and be assured that each weak hypothesis has advantage at least 1/4s at every stage

of boosting. If we boost to accuracy ε = 1
2n+1 , then the resulting final hypothesis will have zero

error with respect to f and will be a MAJORITY of O(log(1/ε)/s2) = O(ns2) many r-PARITY

functions. Note that while this argument does not lead to a computationally efficient construction

of the desired MAJORITY of r-PARITY, it does establish its existence, which is all we need.

76

Remark 4.6.2. Any union (OR) of s many r-rectangles can be expressed as an O(s)-MAJORITY of

r-rectangles as well.

Theorem 4.4.1 and Lemma 4.6.1 together give us the following:

Theorem 4.6.3. The concept class C consisting of functions expressible as s-MAJORITY of r-

rectangles (or, more generally, of s-MAJORITY of r-AND of b-literals which need not necessarily

be basic) where s = poly(n log b), r = O(log(n log b)
log log(n log b)) is efficiently learnable under GHS.

4.6.2 Learning unions of fewer rectangles of higher dimension

We now show that the number of rectangles s and the dimension bound r of each rectangle can

be traded off against each other in Theorem 4.6.3 to a limited extent. We state the results below

for the case s = poly(log(n log b)), but one could obtain analogous results for a range of different

choices of s.

We require the following lemma:

Lemma 4.6.4. Any s-term r-DNF can be expressed as an rO(
√
r log s)-MAJORITY of O(

√
r log s)-

PARITY of Boolean literals.

Proof. [KS04, Corollary 13] states that any s-term r-DNF can be expressed as an rO(
√
r log s)-

MAJORITY ofO(
√
r log s)-ANDs. By considering the Fourier representation of an AND, it is clear

that each t-AND in the MAJORITY can be replaced by at most 2O(t) many t-PARITYs, correspond-

ing to the parities in the Fourier representation of the AND. This gives the lemma.

Now we can prove our theorem, which gives us roughly a quadratic improvement in the dimen-

sion r of rectangles over Theorem 4.6.3 when s = poly(log(n log b)).

Theorem 4.6.5. The concept class C consisting of unions of s = poly(log(n log b)) many r-

rectangles where r = O(log2(n log b)
(log log(n log b) log log log(n log b))2

) is efficiently learnable via Algorithm 8.

Proof. First note that by Lemma 4.5.4, any function in Cn,b can have at most κ = O(rs) =

poly(log(n log b)) non-trivial indices, and at most ` = O(s) = poly(log(n log b)) many i-sensitive

values for all i = 1, . . . , n. Now use Lemma 4.6.4 to express any function in Cn,b as an s′-

MAJORITY of r′-PARITY of basic b-literals where s′ = rO(
√
r log s) = poly(n log b) and r′ =

O(
√
r log s) = O(log(n log b)

log log log(n log b)). Finally, apply Theorem 4.5.5 to obtain the desired result.

77

Remark 4.6.6. It is possible to obtain a similar result for learning poly(log(n log b)) union of

O(log2(n log b)
(log log(n log b))4

)-AND of b-literals if one were to invoke Theorem 4.4.1.

4.6.3 Learning majorities of unions of disjoint rectangles

A set {R1, . . . , Rs} of rectangles is said to be disjoint if every input x ∈ [b]n satisfies at most one

of the rectangles. Learning unions of disjoint rectangles over [b]n was studied by [BK98], and is a

natural analogue over [b]n of learning “disjoint DNF” which has been well studied in the Boolean

domain (see e.g. [Kha94, ABK+98]).

We observe that when disjoint rectangles are considered Theorem 4.6.3 extends to the concept

class of majority of unions of disjoint rectangles; enabling us to improve the depth of our circuits

by 1. This extension relies on the following easily verified fact:

Fact 4.6.7. If f1, . . . , ft are functions from [b]n to {−1, 1}n such that each x satisfies at most one

fi, then the function OR(f1, . . . , ft) satisfies

L1(OR(f1, . . . , ft)) = O(L1(f1) + · · ·+ L1(f(t))).

This fact lets us apply the argument behind Theorem 4.4.8 without modification, and we obtain

the following:

Corollary 4.6.8. The concept class C consisting of s-MAJORITY of t-OR of disjoint r-rectangles

where s, t = poly(n log b), r = O(log(n log b)
log log(n log b)) is efficiently learnable under GHS.

Remark 4.6.9. Only the rectangles connected to the same OR gate must be disjoint in order to

invoke Corollary 4.6.8.

4.7 Learning unions of rectangles using uniform quantum examples

In this section we are interested in exploring the consequences of the earlier results in this chapter

towards learning with quantum computation. Obviously if we permit our quantum learning algo-

rithm access to quantum membership queries (as defined earlier in Section 3.3), we can replicate all

the results in this chapter. This is because quantum computation with quantum membership queries

78

is stronger than classical computation with classical membership queries. However we will adopt

the uniform distribution quantum PAC learning model in which no access to classical or quantum

membership queries is permitted.

Recall that the quantum PAC learning model is defined in full generality in Section 3.6. This

model, introduced by Bshouty and Jackson in [BJ99], is a natural quantum extension of the classical

PAC model introduced by Valiant [Val84]. Some considerable portion of classical learning theory

literature is based on membership queries as classical PAC learnable classes are rather limited. In

contrast, the uniform distribution quantum PAC model allows access to uniform quantum examples

only – which can’t simulate classical membership queries (see Lemma 5.2.1).

4.7.1 Sampling from the Fourier spectrum of {−1, 1}-valued functions over [b]n us-

ing uniform quantum examples

Let f : {0, 1}n → {−1, 1} be a Boolean function. [BJ99, Section 5.1] describes an algorithm

QSAMP, which has its roots in an idea from [BV97], that uses uniform quantum examples and can

sample from the Fourier spectrum of functions defined over Boolean domains. More precisely,

QSAMP uses one call to QEX(f) and its output is distributed as depicted on the left hand side of

Table 4.1.

QSAMP(f) given f : {0, 1}n → {−1, 1} GQSAMP(f) given f : [b]n → {−1, 1}
produces the following output: is desired to produce the following output:

S ⊆ [n], with probability |f̂(S)|2
2 , α ∈ [b]n, with probability |f̂(α)|2

2 ,
FAIL, with probability 1/2. FAIL, with probability 1/2.

Table 4.1: Output distribution of QSAMP vs. GQSAMP.

In this section our goal is to extend the idea of Bshouty and Jackson to obtain an analogous

quantum subroutine GQSAMP defined for functions over [b]n. In particular, given any f : [b]n →

{−1, 1}, we want each call to GQSAMP to use one quantum example and the distribution of its

output to be as depicted on the right hand side of Table 4.1.

As described by [Dam01, Section B.2], a b-level quantum register, which can assume a superpo-

sition of the basis states {|x〉, x ∈ [b]}, can be implemented using dlog be qubits. Multidimensional

quantum registers arise naturally in our discussion as our functions are defined over [b]n. Clearly,

79

the elements (x1, . . . , xn) ∈ [b]n are in one to one correspondence with computational basis states

of n b-level quantum registers.

First we define the uniform quantum example oracle associated to a function f : [b]n →

{−1, 1}.

Definition 4.7.1. Given f : [b]n → {−1, 1}, the uniform quantum example oracle QEX(f) is the

quantum oracle whose query acts over a quantum register of n b-level quantum subregisters and

one qubit. A QEX(f) query can only be invoked in the quantum state |0n〉|0〉 over which its action

is defined as follows:

For f : [b]n → {−1, 1},QEX(f) : |0n〉|0〉 7→ 1
bn/2

∑
(x1,...,xn)∈[b]n

|x1, . . . , xn〉|
1− f(x1, . . . , xn)

2
〉.

We sometimes refer to a query to the uniform quantum example oracle as a quantum example.

This definition of a quantum example extends that of [BJ99] (as explained in detail in Section 3.6),

originally defined for Boolean valued functions over {0, 1}n analogously to Boolean valued func-

tions over [b]n. Clearly by the term “uniform” we mean the underlying distribution D (as in the

definition of QEX in Section 3.6) is fixed as the uniform distribution over [b]n.

Now follows the main result of this section.

Lemma 4.7.2. There exists a quantum algorithm GQSAMP that, given a quantum example oracle

QEX(f) for f : [b]n → {−1, 1}, returns α ∈ [b]n with probability |f̂(α)|2
2 and FAIL with probability

1/2.

Proof. First, define the following unitary transformation acting on the computational basis states

of n b-level quantum subregisters:

T : |x1, x2, . . . , xn〉 7→ |x1, x2, . . . , xn〉, where xi denotes the element y ∈ [b], y ≡ −xi mod b.

The Quantum Fourier Transform over Znb (see [Dam01, MZ03, Sho97]) is defined on n b-level

quantum subregisters as follows:

FZn
b
: |x1, . . . , xn〉 7→

1
bn/2

∑
(y1,...,yn)∈[b]n

ω
P
xiyi

b |y1, . . . , yn〉.

80

Now consider the following algorithm over n b-level quantum subregisters and one qubit:

1. Start with a uniform quantum example QEX(f) over |0n〉|0〉. The quantum state after this

step will be:

QEX(f)|0n〉|0〉 =

 1
bn/2

∑
x=(x1,...,xn)∈[b]n

|x〉|1− f(x)
2

〉


2. Apply the unitary transformation T ⊗ I where I denotes the identity operator on the last

qubit. This will have the following effect on our registers:

(T ⊗ I)

 1
bn/2

∑
x∈[b]n

|x〉|1− f(x)
2

〉

 =

 1
bn/2

∑
x∈[b]n

|x1, . . . , xn〉|
1− f(x)

2
〉


The purpose of this transformation is to create the effect of conjugation in

Ex∈[b]n [f(x)χα(x)] = f̂(α)

to ultimately set f̂(α)√
2

as the amplitude of the state |α〉|1〉.

3. Apply the unitary transformation FZn
b
⊗ FZ2 , i.e. the Quantum Fourier Transform over Znb

on the first n b-level quantum subregisters and the Quantum Fourier Transform FZ2 over Z2

on the last qubit. The effect will be:

(FZn
b
⊗ FZ2)

 1
bn/2

∑
x∈[b]n

|x1, . . . , xn〉|
1− f(x)

2
〉


=

1√
2bn

∑
x, α∈[b]n

z∈{0,1}

ω
−

P
xiαi

b (−1)z·
1−f(x)

2 |α〉|z〉

=
1√
2bn

 ∑
x,α∈[b]n

(ωb)
P
xiαif(x)|α〉|1〉+

∑
x,α∈[b]n

(ωb)
P
xiαi |α〉|0〉


=

1√
2

∑
α∈[b]n

Ex∈[b]n [f(x)χα(x)]|α〉|1〉+ 1√
2

∑
α∈[b]n

Ex∈[b]n [χα(x)]|α〉|0〉

=
1√
2

∑
α∈[b]n

f̂(α)|α〉|1〉+ 1√
2
|0n〉|0〉.

81

4. Measure the last qubit. Output FAIL if it collapses to 0, otherwise measure the first n b-level

registers and output its value α ∈ [b]n.

This gives us the desired GQSAMP algorithm due to the above calculation.

4.7.2 Locating heavy Fourier indices of real valued functions over [b]n using uni-

form quantum examples

The idea in this section is due to Bshouty and Jackson [BJ99], we rephrase it for our purposes and

provide it here for completeness.

In this section, our goal is to derive an analogous result to Lemma 4.3.2. However unlike

Lemma 4.3.2 or its basic underlying tool, Theorem 4.3.1, we are given access to uniform quantum

examples only – no membership queries are allowed. Ultimately our construction will give rise

to a GHS algorithm running under quantum PAC model assumptions with respect to the uniform

distribution.

Recall that the underlying key component of the weak hypothesis construction of GHS in

Lemma 4.3.2 is the ability to locate one index β such that |ED[fχβ]| ≥ γ/2. Indeed, Theo-

rem 4.3.1 provides a list of indices satisfying this requirement, although only one index is essen-

tially sufficient for our purposes. Equivalently, because ED[fχβ] = E[bnDfχβ], this problem is

basically the same problem as locating the heavy Fourier elements of (bnDf) : [b]n → R which

gives this section its name.

The following lemma, translating Theorem 4.3.1 into quantum PAC model assumptions, will

become our fundamental tool towards this objective. Note that the statement is directly reminiscent

of Theorem 4.3.1 if we consider the input function as g(x) = ζ(x)f(x) – apart from one major

difference: the requirement of uniform quantum examples.

Lemma 4.7.3. There is a quantum algorithm that, given

• Uniform quantum examples QEX(f), as defined in Section 4.7.1, where f : [b]n → {−1, 1};

• ζ(x) : [b]n → R+ ∪ {0}, by an algorithm computing ζ(x) in time polynomial in n, log b for

each x ∈ [b]n; and

• 0 < γ and 0 < δ < 1,

82

outputs a list L such that with probability at least 1 − δ, we have {α : |(̂ζf)(α)| > γ} ⊆ L and

|(̂ζf)(β)| ≥ γ
2 for every β ∈ L. The running time of the algorithm is polynomial in n, log b, ‖ζ‖∞,

γ−1, log(δ−1).

Proof. This argument is due to [BJ99]. The key idea is that the problem of constructing a list

containing the heavy Fourier indices of ζf can be reduced to locating the heavy Fourier indices of

a list of {−1, 1}-valued functions: θ1f, θ2f, . . . , θdf , where d = O(log(‖ζ‖∞γ−1)). And then the

algorithm of Section 4.7.1 for {−1, 1}-valued functions can be used for this purpose over each θif .

Let

d = dlog(3‖ζ‖∞γ−1)e and θ(x) = b2d ζ(x)
‖ζ‖∞

c2−d,

in other words: θ(x) is truncation of
ζ(x)
‖ζ‖∞

to its most significant d bits.

The error induced by this truncation will not be too large in the following sense:

|E[fθχα]| ≥ |E[ζfχα]|
‖ζ‖∞

− γ

3‖ζ‖∞
for all α ∈ [b]n. (4.7.1)

Therefore

if |(̂ζf)(α)| > γ, for some α ∈ [b]n, then |E[fθχα]| > 2γ
3‖ζ‖∞

. (4.7.2)

By definition, for all x ∈ [b]n, 0 ≤ θ(x) ≤ 1 and consequently θ(x) can be written as follows:

θ(x) = θ1(x)2−1 + θ2(x)2−2 + . . .+ θd(x)2−d + r(x)2−d (4.7.3)

where for each i = 1, . . . , d, θi : [b]n → {−1, 1} and r : [b]n → {−1, 0, 1}.

Observe that using the algorithm computing ζ(x), it is possible to compute θ(x) and thus each

θi(x) in time polynomial in n, log b for every x ∈ [b]n.

Let’s multiply both sides of equation (4.7.3) with fχα and take the expectation over all x ∈ [b]n.

Because of the definition of d and fr is a {−1, 0, 1}-valued function, |E[frχα]|2−d ≤ γ
3‖ζ‖∞ . Thus

83

we obtain:

|E[fθχα]| ≤ max
i
|E[fθiχα]|+ γ

3‖ζ‖∞
. (4.7.4)

Combined with the observation in (4.7.2), the inequality (4.7.4) implies:

If |(̂ζf)(α)| > γ, for some α ∈ [b]n, then there exists 1 ≤ i ≤ d, such that |E[fθiχα]| > γ

3‖ζ‖∞
.

(4.7.5)

Now consider the following algorithm:

1. For each 1 ≤ i ≤ d, calculate a list L′i containing {α : |E[fθiχα]| > γ
3‖ζ‖∞ }with probability

1− δ
3d .

In order to compute such a list L′i one can proceed as follows: Start with a uniform quantum

example QEX(f), apply the unitary transformation mapping the state

|x, 1− f(x)
2

〉 7→ |x, 1− θi(x)f(x)
2

〉

and then follow the steps 2–4 of GQSAMP algorithm in Section 4.7.1 to sample from the

Fourier spectrum of θif . Let’s call this algorithm Ai.

Now note that:

• By Parseval’s Identity there are at most poly(‖ζ‖∞, γ−1) indices α for which

|(̂fθi)(α)| = |E[fθiχα]| > γ

3‖ζ‖∞
.

• Moreover for any such α, the probability of obtaining α as a result of each iteration of

the algorithm Ai is |(̂fθi)(α)|2
2 ≥ (γ2

18‖ζ‖2∞
).

Therefore in order to run into all such indices with probability at least 1− δ
3d , it is sufficient

to invoke the algorithm Ai poly(‖ζ‖∞, γ−1, log(δ−1)) times. This will give rise to such a

list L′i with probability 1− δ
3d .

2. Set L′ = ∪iL′i. Due to the observation in (4.7.5), one has {α : |(̂ζf)(α)| > γ} ⊆ L′.

84

3. For every β ∈ L′, approximate |(̂ζf)(β)| to accuracy γ/4 with success probability 1− δ
3|L′| .

This could be achieved with random examples in poly(n, log b, ‖ζ‖∞, γ−1, log(δ−1)) steps

in total. Discard from L′ those β for which the approximation to |(̂ζf)(β)| is less than 3γ/4.

4. Output the list of remaining elements L.

This algorithm establishes the result.

Consequently, we can reexpress Lemma 4.3.2 in terms of uniform quantum examples which

gives rise to the GHS algorithm under quantum PAC learning model with respect to uniform distri-

bution.

Lemma 4.7.4 (Construction of the weak hypothesis using uniform quantum examples). Given

• Access to uniform quantum examples QEX(f) where f : [b]n → {−1, 1};

• A smooth distribution D; more precisely, access to an algorithm computing D̃(x) in time

polynomial in n, log b for each x ∈ [b]n. Here D̃ is a “pseudo-distribution” for D, i.e. there

is a value c ∈ [1/2, 3/2] such that D̃(x) = cD(x) for all x.

• A value 0 < γ < 1/2 such that there exists an element of the Fourier basis χτ satisfying

|ED[fχτ]| > γ,

there is a quantum algorithm that outputs a weak hypothesis for f with advantage γ/4 under D

with probability 1− δ and runs in time polynomial in n, log b, ε−1, γ−1, log(δ−1).

Proof. The proof is essentially the same as Lemma 4.3.2. The only difference is that instead of

invoking Theorem 4.3.1 using membership queries, we invoke 4.7.3 using quantum examples with

ζ(x) = bnD̃(x) to locate a heavy Fourier index of f∗(x) = bnD̃(x)f(x) = ζ(x)f(x). Since the

rest of the proof of Lemma 4.3.2 relies on random examples to f , these can easily be simulated

using uniform quantum examples QEX(f).

Corollary 4.7.5 (The Generalized Harmonic Sieve with uniform quantum examples). Let C be

a concept class. Suppose that for any concept f ∈ Cn,b and any distribution D over [b]n with

L∞(D) < poly(ε−1)/bn there exists a Fourier basis element χα such that |ED[fχα]| ≥ γ. Then

85

C can be learned by a quantum algorithm using poly(n, log b, ε−1, γ−1) time including queries to

the uniform quantum example oracle QEX (i.e. there exist uniformly generated quantum circuits in

this amount of time as described in Section 2.1).

Note the similarity between Corollary 4.7.5 and Corollary 4.3.3. The main difference is that

Corollary 4.7.5 uses uniform quantum examples as opposed to membership queries to extract in-

formation about the concept. Clearly Corollary 4.7.5 also requires quantum computation – but only

for the construction of the weak hypothesis, not for the boosting.

Let us go back to our main application of learning unions of rectangles in Section 4.6.

At this point, thanks to Corollary 4.7.5, we can immediately build over the results of Sec-

tion 4.4. Consequently, Theorems 4.4.1 and 4.6.3 as well as Corollary 4.6.8 carry over, as they

are based on the results of Section 4.4, to give us equivalent learnability results in the uniform

distribution quantum PAC model.

The only remaining result of Section 4.4 is Theorem 4.6.5. Note that the idea of locating sensi-

tive elements and the underlying techniques in Section 4.5 relies on membership queries. However,

we are interested in algorithms using uniform quantum examples only for uniform distribution

quantum PAC learning. Consequently, we cannot build over the results of Section 4.5 as we did

earlier in the proof of Theorem 4.6.5. Nevertheless, by using Theorem 4.4.1 directly as pointed out

by Remark 4.6.6, we can obtain a similar albeit slightly coarser result in the uniform distribution

quantum PAC model.

Chapter 5

Quantum Algorithms for Testing and

Learning Juntas

5.1 Introduction

5.1.1 Motivation

A common theme in the literature of quantum computational learning theory is that these works

study: quantum learning / testing algorithms that use purely quantum oracles (such as the quantum

membership oracle of Section 3.3 or the quantum example oracle of Section 3.6). For instance,

[BJ99] modifies the Harmonic Sieve algorithm of [Jac97] so that it uses only uniform quantum

examples to learn DNF formulas. [BFNR03] considers the problem of quantum property testing

using quantum membership queries to give an exponential separation between classical and quan-

tum testers for certain concept classes. In Chapter 3 (based on the article [AS05]), we considered

the information theoretic requirements of exact learning and partition learning using quantum mem-

bership queries as well as PAC learning using quantum examples. Many other articles including

[SG04, AIK+04a, HMP+03] further extend this list.

As the problem of building large scale quantum computers remains a major challenge, it is

natural to question the technical feasibility of large scale implementation of the quantum oracles

considered in the literature. It is desirable to minimize the number of quantum oracle queries

required by quantum algorithms. Thus motivated, in this chapter we are interested in designing

86

87

algorithms in a new framework: algorithms with access to both quantum and classical sources of

information (with a goal of minimizing the quantum resources required).

5.1.2 The results of this chapter

All of our positive results are based off of a quantum subroutine due to [BJ99], which we will refer

to as a FS (Fourier Sample) oracle call. As explained in Section 5.2, a call to the FS oracle yields

a set drawn according to the Fourier spectrum of the target Boolean function. As demonstrated

by [BJ99], such an oracle can be implemented using O(1) uniform quantum examples from a

QEX(f,U) oracle. In fact, our algorithms will be purely classical apart from the FS oracle access.

This approach allows us to abstract away from the intricacies of quantum computation, and renders

our results useful towards any setting in which such a subroutine can be provided to the user.

Hence, in a sense learning and testing with FS oracle queries can be regarded as a new distinct

model, which may possibly be weaker than the uniform distribution Quantum PAC model.

All our algorithms can be implemented within the (uniform distribution) quantum PAC model

first proposed by [BJ99]. Recall that the quantum PAC learning model is defined in full generality

in Section 3.6. This model is a natural quantum extension of the classical PAC model introduced by

Valiant [Val84]. Consequently no access to classical or quantum membership queries are permitted

or used by our algorithms. However, calls to the FS oracle and classical random examples are

allowed as they can be simulated by O(1) uniform quantum examples. Some considerable portion

of classical learning theory literature is based on membership queries as classical PAC learnable

classes are rather limited. In contrast, the quantum PAC model under uniform distribution allow

access to uniform quantum examples only – which can’t efficiently simulate classical membership

queries in general [BJ99].

We are primarily interested in the information theoretic requirements (i.e. the number of queries

or oracle calls needed) of the learning and testing problems that we discuss. We give upper and

lower bounds for a range of learning and testing problems.

Our first result, in Section 5.3, is a k-junta testing algorithm which uses O(k/ε) FS oracle

calls. Our algorithm uses fewer queries than the best known classical junta testing algorithm due

to Fischer et al. [FKR+04], which uses O((k log k)2ε−1) membership queries. However, since the

88

best lower bound known for membership query based junta testing (due to Chockler and Gutfre-

und [CG04]) is Ω(k), our result does not rule out the possibility that there might exist a classical

membership query algorithm with the same query complexity.

To complement our FS based testing algorithm, we establish a new lower bound: Any FS based

k-junta testing algorithm requires Ω(
√
k) calls to the FS oracle. This shows that our our testing

algorithm is not too far from optimal.

Next we consider algorithms that can both make FS queries and also access classical ran-

dom examples. In Section 5.4 we give an algorithm for learning k-juntas over {−1, 1}n that uses

O(ε−1k log k) FS queries and O(log(ε−1)2k) random examples. Since any classical learning algo-

rithm requires Ω(2k+log n) examples (even if it is allowed to use membership queries), this result

illustrates that it is possible to reduce the classical query complexity substantially (in particular, to

eliminate the dependence on n) if the learning algorithm is also permitted to have some very lim-

ited quantum information. Moreover most of the consumption of our algorithm is from classical

random examples which are considered quite “cheap” relative to quantum examples. From another

perspective, our result shows that for learning k-juntas, almost all the quantum examples used

by the algorithm of Bshouty and Jackson [BJ99] can in fact be converted into ordinary classical

random examples.

Finally, in Section 5.5 we present a learning algorithm for polynomially t-sparse functions us-

ing O(tε log t
ε) FS oracle calls and random examples. As shown by [KM93], some important and

natural function classes such as decision trees and functions with bounded L1 norm are polynomi-

ally sparse. We give an Ω(n
√
t + t) lower bound on the number of classical membership queries

that are required to learn t-sparse functions; since our quantum algorithm’s sample complexity has

no dependence on n, it goes beyond what is possible for a classical learning algorithm using mem-

bership queries. Our algorithm also compares favorably to using the [BJ99] algorithm for learning

t-sparse functions in terms of the number of quantum examples used.

5.1.3 Organization of this chapter

In Section 5.2 we describe the models and problems we will consider and present some useful

preliminaries from Fourier analysis and probability. Sections 5.3 and 5.4 give our results on testing

89

and learning juntas respectively. Section 5.5 extends our results on learning juntas to a more general

setting of learning functions whose Fourier representations are “polynomially sparse.”

5.2 Preliminaries

5.2.1 The problems and the models

In this chapter, a concept c over {−1, 1}n is a Boolean function c : {−1, 1}n → {−1, 1}, where−1

stands for TRUE and 1 stands for FALSE. A concept class C = ∪n≥1Cn is a set of concepts where

Cn consists of those concepts in C whose domain is {−1, 1}n. For ease of notation throughout the

chapter we will omit the subscript in Cn and simply write C to denote a collection of concepts over

{−1, 1}n.

The concept class we will chiefly be interested in is the class of k-juntas. A Boolean function

f : {−1, 1}n → {−1, 1} is a k-junta if f depends only on k out of its n input variables.

The problems:

We are interested in the following computational problems:

Learning under the uniform distribution: Given any target concept c ∈ C, an ε-learning al-

gorithm for concept class C under the uniform distribution outputs a hypothesis h with

probability at least 2/3 which agrees with c on at least 1 − ε fraction of the inputs. This

is a widely studied problem in learning theory literature both in classical (see for instance

[KM93, Jac97]) and in quantum (see [BJ99]) versions.

Property testing: Let c be any Boolean function c : {−1, 1}n → {−1, 1}. A property testing

algorithm for concept class C is an algorithm which, given access to c, behaves as follows:

• If c ∈ C then the algorithm outputs ACCEPT with probability at least 2/3.

• If c is ε-far from any concept in C, i.e. for any concept f ∈ C, c and f differ on at

least ε fraction of the inputs, then the algorithm outputs REJECT with probability at

least 2/3.

90

Knowing that a concept depends on only a small number of variables can be especially useful

in the context of learning. The notion of property testing was first developed by [GGR98]

and [RS96]. Quantum property testing was first studied by Buhrman et al. [BFNR03], which

first gave an example of an exponential separation between classical and quantum testers.

Note that a learning or testing algorithm forC “knows” the classC but does not know the identity of

the target concept c ∈ C. We are interested in time efficient algorithms for both of these problems:

Algorithms running in poly(n, 2k, ε−1) time for k-juntas and poly(n, t, ε−1) time for polynomially

t-sparse functions.

Classical oracles:

Naturally, in order for the learning and testing algorithms to gather information about the target

concept they need a an information source called an oracle. The number of times an oracle is

queried by an algorithm is referred to as the query complexity. Sometimes the algorithms will be

allowed access to more than one type of oracle in our discussion.

Throughout this chapter the following oracles providing classical information will be discussed:

Membership oracle MQ: As defined earlier in Section 3.2.2, a membership oracle MQ(f) is an

oracle which, when queried with input x, outputs the label f(x) assigned by the target f to

the input.

Uniform random examples EX: A query EX(f) of the random example oracle returns an ordered

pair 〈x, f(x)〉where x is drawn uniformly random from the set of all inputs. This is the same

oracle as EX(f,U) as defined in Section 3.2.2, where U denotes the uniform distribution over

{−1, 1}n.

Clearly single call to an MQ oracle can simulate the random example oracle EX. Indeed EX oracle

queries are considered “cheap” compared to membership queries. For example, in many settings

one can get random examples but can’t see a desired input (e.g. weather, stock market). Note

that the set of concept classes that are efficiently PAC learnable with uniform random examples

only is rather limited. In contrast, there are known efficient algorithms using membership queries

91

for learning important function classes such as DNF formulas [Jac97]. Recall that classical PAC

learnability was discussed earlier in Section 3.2.2.

Quantum oracles:

We will consider the following quantum oracles. These are the quantum generalizations of mem-

bership queries and uniform random examples respectively.

Quantum membership queries QMQ: The quantum membership oracle QMQ(f) is the quan-

tum oracle whose query acts on the computational basis states as follows:

QMQ(f) : |x, b〉 7→ |x, b� f(x)〉, where x ∈ {−1, 1}n and b ∈ {−1, 1}.

Uniform quantum examples QEX: The uniform quantum example oracle QEX(f) is the quan-

tum oracle whose query acts on the computational basis state |1n, 1〉 as follows:

QEX(f) : |1n, 1〉 7→
∑

x∈{−1,1}n

1
2n/2
|x, f(x)〉.

The action of a QEX(f) query is undefined on other basis states, and an algorithm may only

invoke the QEX(f) query on the basis state |1n, 1〉.

Note that the above definitions for QMQ(f) and QEX(f) are essentially equivalent to QMQ(f)

in Section 3.3 and QEX(f,U) in Section 3.6 respectively. There is only one notational difference:

since our concepts are functions f : {−1, 1}n → {−1, 1}, we name the computational basis states

of a qubit as |1〉, | − 1〉 instead of |0〉, |1〉. Under this new convention, the action of the queries to

QMQ(f) and QEX(f) are expressed as above.

It is clear that a QMQ oracle can simulate QEX and MQ oracles, and a QEX oracle can simulate

a EX oracle.

The quantum PAC learning model, as defined in full generality in Section 3.6, was introduced

by Bshouty and Jackson in [BJ99]. As is the case with classical PAC learning vs. learning with

membership queries, this model, allowing access to QEX queries only, is weaker than learning

with quantum membership queries under uniform distribution. In fact, the following fact due to

92

[BJ99, Theorem 5] demonstrates that even the classical membership queries cannot be efficiently

simulated by quantum examples.

Lemma 5.2.1 (See [BJ99]). For DNF formulas membership queries MQ cannot be simulated by a

polynomial size quantum network using QEX oracle queries.

5.2.2 Harmonic analysis of functions over {−1, 1}n

We will make use of the Fourier expansion of real valued functions over {−1, 1}n. We write [n] to

denote the set of variables {x1, x2, . . . , xn}.

Consider the set of real valued functions over {−1, 1}n endowed with the inner product

〈f, g〉 = E[fg] =
1
2n

∑
x

f(x)g(x)

and induced norm ‖f‖ =
√
〈f, f〉. For each S ⊆ [n], let χS be the parity function χS(x) =∏

xi∈S xi. It is a well known fact that the 2n functions {χS(x), S ⊆ [n]} form an orthonormal

basis for the vector space of real valued functions over {−1, 1}n with the above inner product.

Consequently, every f : {−1, 1}n → R can be expressed uniquely as:

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

which we refer to as the Fourier expansion or Fourier transform of f . Alternatively, the values

{f̂(S) : S ⊆ [n]} are called the Fourier coefficients or the Fourier spectrum of f . Recall that

analogous notions were introduced in Section 4.2.3 for functions over [b]n.

Parseval’s Identity relates the values of the coefficients to the values of the function:

Lemma 5.2.2 (Parseval’s Identity). For any f : {−1, 1}n → R, we have
∑

S⊆[n] |f̂(S)|2 = E[f2].

Thus for a Boolean valued function
∑

S⊆[n] |f̂(S)|2 = 1.

We write L1(f) to denote
∑

S⊆[n] |f̂(S)|. We will use the following simple and well-known

fact:

93

Fact 5.2.3 (See [KM93]). For any f : {−1, 1}n → {−1, 1} and any g : {−1, 1}n → R, we have

Prx[f(x) 6= sgn(g(x))] ≤ Ex[(f(x)− g(x))2] =
∑
S⊆[n]

|f̂(S)− ĝ(S)|2

Recall that the influence of a variable xi on a Boolean function f is the probability (taken over

a uniform random input x for f) that f changes its value when the i-th bit of x is flipped, i.e.

Infi(f) = Prx[f(xi ← −1) 6= f(xi ← 1)].

It is well known (see e.g. [KKL88]) that Infi(f) =
∑

S3xi
|f̂(S)|2.

5.2.3 Additional tools

Fact 5.2.4 (Data Processing Inequality). Let X1, X2 be two random variables over the same do-

main. For any (possibly randomized) algorithm A, one has that

‖A(X1)−A(X2)‖1 ≤ ‖X1 −X2‖1.

Let S1, S2 be random variables corresponding to sequences of draws taken from two different

distributions over the same domain. By the above inequality, if ‖S1 − S2‖1 is known to be small,

then the probability of success must be small for any algorithm designed to distinguish if the draws

are made according to S1 or S2.

We will also use standard Hoeffding and Chernoff bounds as introduced in Chapter 2.

5.2.4 The Fourier sampling oracle: FS

Definition 5.2.5. The Fourier sampling oracle FS(f) is the classical oracle whose query returns

a subset of variables S with probability |f̂(S)|2, where f̂(S) denotes the corresponding Fourier

coefficient as defined in Section 5.2.2. Note that due to Parseval’s Identity given by Lemma 5.2.2,∑
S⊆[n] |f̂(S)|2 = 1.

This oracle will play an important role in our algorithms.

94

In [BJ99] Bshouty and Jackson develops a constant size quantum network QSAMP, which has

its roots in an idea by [BV97]. See Section 4.7.1 for a detailed description of the QSAMP network’s

behaviour. QSAMP allows sampling from the Fourier spectrum of a Boolean function using O(1)

QEX oracle queries:

Lemma 5.2.6 (See [BJ99]). For any Boolean function f , it is possible to simulate a draw from the

FS(f) oracle with probability 1− δ using O(log δ−1) QEX(f) queries.

Proof. Recall the behavior of QSAMP in [BJ99] explained in Section 4.7.1. When QSAMP ter-

minates successfully, it returns a draw from FS oracle. As described in Section 4.7.1, QSAMP

is successful 1/2 of the time, and thus by repeating the QSAMP algorithm O(log δ−1) times it is

possible to obtain a draw from the FS oracle with probability 1− δ.

All the algorithms we describe are otherwise classical algorithms with FS queries.

5.3 Testing juntas

Fischer et al. studied the problem of testing juntas given black-box access (i.e., classical member-

ship query access) to the unknown function f using harmonic analysis and probabilistic methods.

They gave several different algorithms giving rise to upper bounds with no dependence on n, the

most efficient of which yields the following:

Theorem 5.3.1 (See [FKR+04, Theorem 6]). There is an algorithm that tests the property of being

a k-junta using O((k log k)2ε−1) membership queries.

The algorithm giving rise to the above test works by randomly partitioning the coordinates into

subsets and finding those subsets with non-negligible influence by considering them in blocks.

Fischer et al. also gave a lower bound on the number of queries required for testing juntas,

which was subsequently improved by Chockler et al. to the following:

Theorem 5.3.2 (See [CG04]). Any algorithm that tests whether f is a k-junta must use Ω(k)

membership queries.

We emphasize that that both of these results concern algorithms with classical membership

query access.

95

5.3.1 A testing algorithm using O(k/ε) FS oracle calls

In this section we describe a new testing algorithm that uses the FS oracle and prove the following

theorem about its performance:

Theorem 5.3.3. There is an algorithm that tests the property of being a k-junta usingO(k/ε) calls

to the FS oracle.

As described in Section 5.2, the algorithm can thus be implemented using O(k/ε) uniform

quantum examples from QEX(f).

Proof. Consider the following algorithm A which has FS oracle access to an unknown function

f : {−1, 1}n → {−1, 1}. Algorithm A first makes 10(k+ 1)/ε calls to the FS oracle; let S denote

the union of all the sets of variables received as responses to these oracle calls. Algorithm A then

outputs “ACCEPT” if |S| ≤ k and outputs “REJECT” if |S| > k.

It is clear that if f is a k-junta then A outputs “ACCEPT” with probability 1. To prove cor-

rectness of the test it suffices to show that if f is ε-far from any k-junta then Pr[A outputs

“REJECT”] ≥ 2
3 .

The argument is similar to the standard analysis of the coupon collector’s problem. Let us view

the set S as growing incrementally step by step as successive calls to the FS oracle are performed.

Let Xi be a random variable which denotes the number of FS queries that take place starting

immediately after the (i − 1)-st new variable is added to S, up through the draw when the i-th

new variable is added to S. By assumption, if the (i− 1)-st and i-th new variables are obtained in

the same draw then Xi = 0. (For example, if the first three queries to the FS oracle are {1, 2, 4},

{2, 4}, {1, 4, 5, 6}, then we would have X1 = 1, X2 = 0, X3 = 0, X4 = 2, X5 = 0.)

Since f is ε-far from any k-junta, we know that for any set T of k′ ≤ k variables, it must be

the case that ∑
S⊆T

f̂(S)2 ≤ 1− ε

(since otherwise if we set g =
∑

S⊆T f̂(S)χS , h = sgn(g) and use Fact 5.2.3, we would have

Prx[f(x) 6= h(x)] ≤ Ex[(f(x)− g(x))2] =
∑
S 6⊆T

f̂(S)2 < ε

96

which contradicts the fact that f is ε-far from any k-junta). It follows that for each 1 ≤ i ≤ k, if

at the current stage of the construction of S we have |S| = i, then the probability that the next FS

query yields a new variable outside of S is at least ε. Consequently we have E[Xi] ≤ 1
ε for each

1 ≤ i ≤ k + 1, and hence

E[X1 + · · ·+Xk+1] ≤
(k + 1)

ε
.

By Markov’s inequality, the probability that X1 + · · ·+Xk+1 ≤ 10(k + 1)/ε is at least 9/10, and

therefore with probability at least 9/10 it will be the case after 10(k+ 1)/ε draws that |S| > k and

the algorithm will consequently output “REJECT.”

Note that the O(k/ε) uniform quantum examples required for Algorithm A improves on the

O(k2/ε2) query complexity of the best known classical algorithm. However our result does not

conclusively show that QEX queries are more powerful than classical membership queries for this

problem since it is conceivable that there could exist an as yet undiscoveredO(k/ε) classical mem-

bership query algorithm.

5.3.2 Lower bounds for the FS oracle based testing

A first approach

As a first attempt to obtain a lower bound on the number of FS oracle calls required to test k-juntas,

it is natural to consider the approach of Chockler et al. from [CG04]. To prove Theorem 5.3.2,

Chockler et al. show that any classical algorithm which can successfully distinguish between the

following two probability distributions over black-box functions must use Ω(k) queries:

• Scenario I: The distribution D
(0)
k,n is uniform over the set of all Boolean functions over n

variables which do not depend on variables k + 2, . . . , n.

• Scenario II: The distribution D
(1)
k,n is defined as follows: to draw a function f from this

distribution, first an index i is chosen uniformly from 1, . . . , k + 1, and then f is chosen

uniformly from among those functions that do not depend on variables k + 2, . . . , n or on

variable i.

97

The following observation shows that this approach will not yield a strong lower bound for

algorithms that have access to a FS oracle:

Observation 5.3.4. WithO(log k) queries to a FS oracle, it is possible to determine w.h.p. whether

a function f is drawn from Scenario I or Scenario II.

Proof. It is easy to see that a function drawn from Scenario I is simply a random function on the

first k + 1 variables. The Fourier spectrum of random Boolean functions is studied in [OS03],

where it is shown that sums of squares of Fourier coefficients of random Boolean functions are

tightly concentrated around their expected value. In particular, Proposition 6 of [OS03] directly

implies that for any fixed variable xi, i ∈ 1, . . . , k + 1, we have:

Pr
f←D

(0)
k,n

∣∣∣∣∣∣
∑
S3xi

|f̂(S)|2 − 1
2

∣∣∣∣∣∣ > 1
6

 < exp(−2k+1/144).

Thus with overwhelmingly high probability, if f is drawn from Scenario I then each FS query will

“expose” variable i with probability at least 1/3. It follows that after O(log k) queries all k + 1

variables will have been exposed; so by making O(log k) FS queries and simply checking whether

or not k + 1 variables have been exposed, one can determine w.h.p. whether f is drawn from

Scenario I or Scenario II.

Thus we must adopt a more sophisticated approach to prove a strong lower bound on FS oracle

algorithms.

An Ω(
√
k) lower bound for FS oracle algorithms

Our main result in this section is the following theorem:

Theorem 5.3.5. Any algorithm that has FS oracle access to an unknown f must use Ω(
√
k) oracle

calls to test whether f is a k-junta.

Proof. Let k be such that k = r + 2r−1 for some positive integer r. We let R denote 2r. The

Addressing function on r + R variables has r “addressing variables,” which we shall denote

x1, . . . , xr, and R = 2r “addressee variables” which we denote z0, . . . , zR−1. The output of

98

the function is the value of variable zx where the “address” x is the element of {0, . . . , R − 1}

whose binary representation is given by x1 . . . xr. Figure 5.1 depicts a decision tree that computes

the general Addressing function and Figure 5.2 with r = 3. Formally, the Addressing function

ADDRESSING : {−1, 1}r+R → {−1, 1} is defined as follows:

ADDRESSING(x1, x2, . . . , xr, z0, z1, . . . , zR−1) = zx,

where x = (
1− x1

2
) ◦ (

1− x2

2
) ◦ . . . ◦ (

1− xr
2

) in binary form and ◦ is binary concatenation.

R−1
zzzzz

x x
2

x

2

1

x x x x
3 3 3 3

x x xr r r

01

−1 1

−1

−1 −1 −1

1 1−1

111

R−2 R−3 R−4
z

Figure 5.1: The decision tree for the Addressing function.

Intuitively, the Addressing function will be useful for us because as we will see the Fourier

spectrum is “spread out” over the R addressee variables; this will make it difficult to distinguish

the Addressing function (which is not a k-junta since k = r + R/2) from a variant which is a

k-junta.

Let x1, . . . , xr, y0, . . . , yn−r−1 be the n variables that our Boolean functions are defined over.

We now define two distributions DREJECT, DACCEPT over functions on these variables.

The distribution DREJECT is defined as follows: to make a draw from DREJECT,

1. First uniformly choose a subset T of R variables from {y0, . . . , yn−r−1};

99

2. Next, replace the variables z0, . . . , zR−1 in the function

ADDRESSING(x1, . . . , xr, z0, . . . , zR−1)

with the variables in T (choosing the variables from T in a uniformly random order). Return

the resulting function.

Note that step (2) in the description of making a draw from DREJECT above corresponds to placing

the variables in T uniformly at the leaves of the decision tree for ADDRESSING (see Figure 5.1).

Equivalently, if we write fτ to denote the following function over n variables

fτ (x1, . . . , xr, y0, . . . , yn−r−1) = ADDRESSING(x1, x2, . . . , xr, yτ(0), yτ(1), . . . , yτ(R−1));

(5.3.1)

a draw from DREJECT is a function chosen uniformly at random from the set CREJECT = {fτ} where

τ ranges over all permutations of {0, . . . , n− r − 1}.

It is clear that every function in CREJECT (the support of DREJECT) depends on r + R variables

and thus is not a k-junta. In fact, every function in CREJECT is far from being a k-junta:

Lemma 5.3.6. Every f that has nonzero probability under DREJECT is 1/6-far from any k-junta.

Proof. Fix any such f and let g be any k-junta. It is clear that at least R/2− r of the “addressee”

variables of f are not relevant variables for g. For a R/2−r
R > 1/3 fraction of all inputs to f , the

value of f is determined by one of these addressee variables; on such inputs the error rate of g

relative to f will be precisely 1/2.

Considering the contribution to the Fourier spectrum from each leaf of the decision tree, we

obtain the following expression for the Fourier representation of each fτ in CREJECT:

fτ (x1, . . . , xr, y0, . . . , yn−r−1) =
R−1∑

i=i1i2...ir=0

yτ(i)(
1 + (−1)i1x1

2
)(

1 + (−1)i2x2

2
) . . . (

1 + (−1)irxr

2
)

(5.3.2)

100

=
1
2r

R−1∑
i=0

∑
X⊆{x1,...,xr}

(−1)(
P

xj∈X ij)yτ(i)χX . (5.3.3)

Note that whenever 1−x1
2 = i1,

1−x2
2 = i2, . . . ,

1−xr
2 = ir, the sum on the RHS of Equation (5.3.2)

has precisely one non-zero term which is yτ(i). This is because the rest of the terms are annihi-

lated since in each of these terms there is some index j such that 1−xj

2 = 1 − ij which makes

(1+(−1)ijxj

2) = 0. Consequently this sum gives rise to exactly the Addressing function in Equa-

tion (5.3.1) which is defined as fτ and consequently the equality in Equation (5.3.2) follows.

Now we turn to DACCEPT.

The distribution DACCEPT is defined as follows: to make a draw from DACCEPT,

1. First uniformly choose a subset T of R/2 variables from {y0, . . . , yn−r−1};

2. Next, replace the variables z0, . . . , zR/2−1 in the function

ADDRESSING(x1, . . . , xr, z0, . . . , zR−1)

with the variables in T (choosing the variables from T in a uniformly random order).

3. Finally, for each i = 0, . . . , R/2 − 1 do the following: if variable yj was used to replace

variable zi in the previous step, let si be a fresh uniform random ±1 value and replace

variable zR−1−i with siyj . Return the resulting function.

Observe that for any integer 0 ≤ i < R/2 with binary expansion i = i1 ◦ i2 ◦ · · · ◦ ir, we have that

the binary expansion of R − 1 − i is i1 ◦ i2 ◦ · · · ◦ ir. Thus steps (2) and (3) in the description of

making a draw from DACCEPT may be restated as follows in terms of the decision tree representation

for ADDRESSING:

2′. Place the variables yj ∈ T randomly among the leaves of the decision tree with index less

than R/2.

3′. For each variable yj ∈ T placed at the leaf with index i = i1 ◦ i2 ◦ · · · ◦ ir < R/2 above,

throw a ±1 valued coin si and place siyj at the antipodal leaf location with index: i =

i1 ◦ i2 ◦ · · · ◦ ir = R− 1− i.

101

−1 11−1

1−1

3333
xxxx

1

2

x

2xx

−1 1 1−1 −1 1 1−1

zzzzzzzz
01234567

Figure 5.2: The decision tree for the Addressing function with r = 3.

Equivalently, if we write gτ,s to denote the following function over n variables

gτ,s(x1, . . . , xr, y0, . . . , yn−r−1) =

ADDRESSING(x1, . . . , xr, yτ(0), . . . , yτ(R/2−1), s(R/2−1)yτ(R/2−1), . . . , s0yτ(0)); (5.3.4)

a draw from DACCEPT is a function chosen uniformly at random from the set CACCEPT = {gτ,s}

where τ ranges over all permutations of {0, . . . , n − r − 1} and s ranges over all of {−1, 1}R/2.

It is clear that every function in CACCEPT depends on at most r + R/2 = k variables, and thus is

indeed a k-junta.

By considering the contribution to the Fourier spectrum from each pair of leaves i, i of the

decision tree, we obtain the following expression for the Fourier expansion of each function in the

support of DACCEPT:

gτ,s(x1, . . . , xr, y0, . . . , yn−r−1) =
R/2−1∑

i=i1i2...ir=0

yτ(i)(
1 + (−1)i1x1

2
)(

1 + (−1)i2x2

2
) . . . (

1 + (−1)irxr

2
)

+
R/2−1∑
i=0

siyτ(i)(
1 + (−1)i1x1

2
)(

1 + (−1)i2x2

2
) . . . (

1 + (−1)irxr

2
)

(5.3.5)

[Since (−1)ij = −(−1)ij] =
1

2r−1

R/2−1∑
i=0


∑

X⊆{x1,...,xr},|X| even

(−1)(
P

xj∈X ij)yτ(i)χX if si = 1;

∑
X⊆{x1,...,xr},|X| odd

(−1)(
P

xj∈X ij)yτ(i)χX if si = −1.

(5.3.6)

102

Just as in the Equation (5.3.2), whenever 1−x1
2 = i1,

1−x2
2 = i2, . . . ,

1−xr
2 = ir, the sum on

the RHS of Equation (5.3.5) has precisely one non-zero term which is yτ(i) if i < R/2 and

sR−1−iyτ(R−1−i) if i ≥ R/2. Therefore this sum gives rise to exactly the Addressing function

in Equation (5.3.4) which is defined as gτ,s and consequently the equality in Equation (5.3.5) fol-

lows.

It follows that for each gτ,s in the support of DACCEPT and for any fixed yj , all elements of the

set {S : yj ∈ S and ĝτ,s(S) 6= 0} will have the same parity. Moreover, given a function drawn

from DACCEPT, for every distinct yj this odd/even parity is independent and uniformly random.

Now we are ready to prove Theorem 5.3.5. Recall that a FS oracle query returns S with

probability |f̂(S)|2 for every subset S of input variables to the function.

Let us define a set T of “typical” outcomes from FS oracle queries. Fix any N = o(
√
k),

and let T denote the set of all sequences {(yj1 , X1), . . . , (yjN , XN)} of length N which have the

property that no yi occurs more than once among yj1 , . . . , yjN .

Note that for any fixed fτ ← DREJECT, every non-zero Fourier coefficient f̂τ (S) satisfies

|f̂τ (S)|2 = 1
22r = 1

R2 due to Equation (5.3.3). Therefore after fτ is drawn, for any fixed yj

the probability of receiving a response of the form (yj , X) as the outcome of a FS query is either

= 0, if fτ is not a function of yj , i.e. j /∈ {τ(0), . . . , τ(R− 1)}; or

= 1
R , if j ∈ {τ(0), . . . , τ(R − 1)}. This is because each of the 2r = R responses (yj , X) occurs

with probability 1
R2 .

Similarly, for any fixed gτ,s ← DACCEPT, every non-zero Fourier coefficient ĝτ,s(S) satisfies

|ĝτ,s(S)|2 = 1
22r−2 = 4

R2 due to Equation (5.3.6). Therefore after gτ,s is drawn, for any fixed yj

the probability of receiving a response of the form (yj , X) as the outcome of a FS query is either

= 0, if gτ,s is not a function of yj , i.e. j /∈ {τ(0), . . . , τ(R/2− 1)}; or

= 2
R , if j ∈ {τ(0), . . . , τ(R/2− 1)}. This is because each of the 2r−1 = R/2 responses (yj , X)

occurs with probability 4
R2 .

Now let us consider the probability of obtaining a sequence from T under each scenario.

103

• If the function is drawn from DREJECT: the probability is at least

1(1− 1/R)(1− 2/R) . . . (1−N/R) > 1− o(1) [by the Birthday Paradox].

• If the function is from DACCEPT: the probability is at least

1(1− 2/R)(1− 4/R) . . . (1− 2N/R) > 1− o(1) [by the Birthday Paradox]

Now the crucial observation is that whether the function is drawn from DREJECT or from

DACCEPT, each sequence in T is equiprobable by symmetry in the construction. To see this, sim-

ply consider the probability of receiving a fixed (yj , X) for some new yj in the next FS query of

an unknown function drawn from either one of these distributions. Using the above calculations

for |f̂(yj , X)|2, one can directly calculate that these probabilities are equal in either scenario. Al-

ternatively, for a function drawn from DACCEPT one can observe that since each successive yj is

“new”, a fresh random bit determines whether the support is an (yj , X) with |X| odd or even; once

this is determined, the choice of X is uniform from all subsets with the correct parity. Thus the

overall draw of (yj , X) is uniform over all X’s. Considering that the subset of relevant variables

T, |T | = R/2 is uniformly chosen from {y0, . . . , yn−r−1}, this gives the equality of the probabil-

ities for each (yj , X) with a new yj when the function is drawn from DACCEPT. The argument for

the case of DREJECT is clear.

Consequently the statistical difference between the distributions corresponding to the sequence

of outcomes of the N FS oracle calls under the two distributions is at most o(1). Now Fact 5.2.4

implies that no algorithm making only N oracle calls can distinguish between these two scenarios

with high probability. This gives us the result.

Intuitively, under either distribution on functions, each element of a sequence of N FS or-

acle calls will “look like” a uniform random draw X from subsets of {x1, . . . , xr} and j from

{0, . . . , n − r − 1} where j and X are independent. Note that this argument breaks down at

N = Θ(
√
R). This is because if the algorithm queried the FS oracle ω(

√
R) times it will start to

see some yi’s more than once (again by the birthday paradox). But when the functions are drawn

104

from DACCEPT the corresponding Xi’s will always have a fixed parity for a given yi whereas for

functions drawn from DREJECT the parity will be random each time. This will provide the algorithm

with sufficient evidence to distinguish w.h.p. between these two scenarios.

5.4 Learning juntas

5.4.1 Known results

The problem of learning an unknown k-junta has been well studied in the computational learning

theory literature, see e.g. [MOS04, AR03, Blu03]. The following classical lower bound will be a

yardstick against which we will measure our results.

Lemma 5.4.1. Any classical membership query algorithm for learning k-juntas to accuracy 1/5

must use Ω(2k + log n) membership queries.

Proof. Consider the restricted problem of learning an unknown variable x1, . . . , xn. Since any two

variables disagree on half of all inputs, any 1/5-learning algorithm can be easily modified into an

algorithm that exactly learns an unknown variable with no more queries. It is well known that any

set of n concepts required Ω(log n) queries for any exact learning algorithm that uses membership

queries only, see e.g. [BCG+96]. This gives the Ω(log n) lower bound.

For the Ω(2k) lower bound, we may suppose that the the algorithm “knows” that the junta

has relevant variables x1, . . . , xk. Even in this case, if fewer than 1
22k membership queries are

made the learner will have no information about at least 1/2 of the function’s output values. A

straightforward application of the Chernoff bound shows that it is very unlikely for such a learner’s

hypothesis to be 1/5-accurate, if the target junta is a uniform random function over the relevant

variables. This establishes the result.

Learning juntas from uniform random examples EX(f) is a seemingly difficult computational

problem. Simple algorithms based on exhaustive search can learn from O(2k log n) examples but

require Ω(nk) runtime. The fastest known algorithm in this setting, due to Mossel et al., uses

(nk)
ω

ω+1 examples and runs in (nk)
ω

ω+1 examples time, where ω < 2.376 is the matrix multiplica-

tion exponent [MOS04].

105

Bshouty and Jackson [BJ99] gave an algorithm using uniform quantum examples from the

QEX oracle to learn general DNF formulas. Their algorithm uses Õ(ns6ε−8) calls to QEX to learn

an s-term DNF over n variables to accuracy ε. Since any k-junta is expressible as a DNF with at

most 2k−1 terms, their result immediately yields the following statement.

Theorem 5.4.2 (See [BJ99]). There exists an ε-learning quantum algorithm for k-juntas using

Õ(n26kε−8) quantum examples under the uniform distribution quantum PAC model.

Note that [BJ99] did not try to optimize the quantum query complexity of their algorithms in

the special case of learning juntas. In contrast, our goal is to obtain a more efficient algorithm for

juntas.

The lower bound of [AS05, Observation 6.3] for learning with quantum membership queries

for an arbitrary concept class of can be rephrased for the purpose of learning k-juntas as follows.

Fact 5.4.3 (See [AS05]). Any algorithm for learning k-juntas to accuracy ε = 1/10 with quantum

membership queries must use Ω(2k) queries.

Proof. Since we are proving a lower bound we may assume that the algorithm is told in advance

that the junta depends on variables x1, . . . , xk. Consequently we may assume that the algorithm

makes all its queries with nonzero amplitude only on inputs of the form |x, 1n−k〉. Now [AS05,

Observation 6.3] states that any quantum algorithm which makes queries only over a shattered

set (as is the set of inputs {|x, 1n−k〉}x∈{−1,1}k for the class of k-juntas) must make at least VC-

DIM(C)/100 QMQ queries to learn with error rate at most ε = 1/10; here VC-DIM(C) is the

Vapnik-Chervonenkis dimension of concept class C. Since the VC dimension of the class of all

Boolean functions over variables x1, . . . , xk is 2k, the result follows.

This shows that a QMQ oracle cannot provide sufficient information to learn a k-junta using

o(2k) queries to high accuracy. It is worth noting that there are other similar learning problems

known where an N -query QMQ algorithm can exactly identify a target concept whose description

length is ω(N) bits. For instance, a single FS oracle call (which can be implemented by a single

QMQ query) can potentially give up to k bits of information; if the concept class C is the class of

all 2k parity functions over the first k variables, then any concept in the class can be exactly learned

by a single FS oracle call.

106

Note that all the results we have discussed in this subsection concern algorithms with access to

only one type of oracle; this is in contrast with the algorithm we present in the next section.

5.4.2 A new learning algorithm

The motivating question for this section is: “Is it possible to reduce the classical query/sample

complexity drastically for the problem of junta learning if the learning algorithm is also permitted

to have very limited quantum information?” We will give an affirmative answer to this question

by describing a new algorithm that uses both FS queries (i.e. quantum examples) and classical

uniform random examples.

Lemma 5.4.4. Let f : {−1, 1}n → {−1, 1} be a function whose value depends on the set of

variables I. Then there is an algorithm querying the FS oracle O(ε−1 log |I|) times which w.h.p.

outputs a list of variables such that

• the list contains all the variables xi for which Infi(f) ≥ ε; and

• all the variables xj in the list have non-zero influence: Infj(f) > 0.

Proof. The algorithm simply queries the FS oracle N = O(ε−1 log |I|) many times and outputs

the union of all the sets of variables received as responses to these queries.

If Infi(f) ≥ ε then the probability that xi never occurs in any response obtained from the N

FS oracle calls is at most (1 − ε)N ≤ 1
10|I| . The union bound now yields that with probability at

least 9/10, every xi with Infi(f) ≥ ε is output by the algorithm.

Theorem 5.4.5. There is an efficient algorithm ε-learning k-juntas with O(ε−1k log k) queries of

the FS oracle and O(log(ε−1)2k) random examples.

Proof. We claim Algorithm 12 satisfies these requirements.

Assume we are given a Boolean function f whose value depends on the set of variables I with

|I| ≤ k. By Lemma 5.4.4, O(ε−1k log k) queries of the FS oracle will reveal all variables with

influence at least (ε/10k) with high probability during Stage 1.

Assuming the algorithm of Lemma 5.4.4 was successful, we group the variables as follows:

107

Algorithm 12 The junta learning algorithm.
1: Input: ε > 0,FS(f),EX(f).
2: Stage 1:
3: Construct a set containing all variables of f with an influence at least (ε/10k) using the algo-

rithm in Lemma 5.4.4. Let A be the final result.
4: ∀a ∈ {−1, 1}|A|, encountered(a)← FALSE.
5: Stage 2:
6: repeat
7: 〈x, f(x)〉 ← Draw from EX(f). Let x|A denote the projection of x onto the variables in A.
8: if encountered(x|A) = FALSE then
9: value(x|A)← f(x), encountered(x|A)← TRUE.

10: end if
11: until For at least (1− ε/3) fraction of all a ∈ {−1, 1}|A|, encountered(a) = TRUE.
12: Output the hypothesis:

H(x) =

{
value(x|A) if encountered(x|A) = TRUE

TRUE otherwise.

Group Description

A The set of variables encountered in Stage 1.

B The set of relevant variables I \ A.

C The remaining n− |I| variables the function does not depend on.
Note that |A|+ |B| ≤ k by Lemma 5.4.4 and by the assumption that f is a k-junta.

We reorder the variables of f so that the new order is A,B, C for notational simplicity, i.e. f is

now considered to be over (a1, . . . , a|A|, b1, . . . , b|B|, c1, . . . , c|C|). We will denote an assignment

to these variables by (a,b, c).

In Stage 2 the algorithm draws random examples until at least (1 − ε/3) fraction of all as-

signments to the variables in A are observed. Let us call this set of assignments by S, and for

every a ∈ S , let us denote the first example 〈x, f(x)〉 drawn in Stage 2 for which x|A = a by

x = (a,ba, ca). At the end of the algorithm, the following hypothesis is produced as the output:

H(a, ∗, ∗) =


f(a,ba, ca) if a ∈ S

TRUE otherwise.

In other words, the value of the hypothesis only depends on the setting of the variables in A. Ob-

108

serve the probability that any given setting of a fixed set of variables in A has not been seen can

be made less than ε/50 using O(log(ε−1)2k) uniform random examples. Therefore the linearity

of expectation implies that after O(log(ε−1)2k) random examples, the expected fraction of unseen

assignments is < ε/50. Thus by Markov’s Inequality the fraction of unseen assignments will be

≤ ε/3 w.h.p. Hence Stage 2 will terminate w.h.p. after O(log(ε−1)2k) random examples. Conse-

quently, the whole algorithm terminates with high probability with the desired query consumption.

All we need to verify is that the hypothesis constructed is ε-accurate.

The hypothesis H is ε-accurate with high probability:

We introduce some notation: Let B = {−1, 1}; and given two strings u, v ∈ B`, let u � v

denote the bitwise multiplication between u, v; and let |u| denote the total number of −1’s in u.

Also let 1W denote the indicator function that takes value 1 if W holds and value 0 if W is false.

We start with the following fact:

Fact 5.4.6. For any s ∈ B|B|, we have 1
2n

∑
a∈B|A|

∑
b∈B|B|

∑
c∈B|C|

1[f(a,b�s,c) 6=f(a,b,c)] < ε/10.

Proof. Given any string s ∈ B|B|, clearly there exists a sequence of |s|+ 1 strings:

1|B| = u1, u2, . . . , u|s|+1 = s, where ui ∈ B|B|, and for i = 1, . . . , s, |ui � ui+1| = 1.

Therefore,

For any s ∈ B|B|,
1
2n

∑
a∈B|A|

∑
b∈B|B|

∑
c∈B|C|

1[f(a,b�s,c) 6=f(a,b,c)]

≤ 1
2n

∑
a∈B|A|

∑
b∈B|B|

∑
c∈B|C|

|s|∑
i=1

1[f(a,b�ui+1,c) 6=f(a,b�ui,c)]

=
|s|∑
i=1

 1
2n

∑
a∈B|A|

∑
b∈B|B|

∑
c∈B|C|

1[f(a,b�ui�ui+1,c) 6=f(a,b,c)]


︸ ︷︷ ︸

=The influence of the unique variable bj(i) that takes value −1 in ui+1 � ui

< ε/10. [Since every bj ∈ B has influence <
ε

10k
and |B| ≤ k]

109

For each a ∈ B|A|, consider a fixed setting of strings ba ∈ B|B|, ca ∈ B|C|. Let us call the list

of all these assignments Γ, i.e. Γ = {∀a ∈ B|A|, (a,ba, ca)}. For any such “list of assignments”

Γ, we define the function FΓ : {−1, 1}n → {−1, 1} as follows: FΓ(a, ∗, ∗) = f(a,ba, ca). The

error incurred by approximating f by FΓ is:

Pr(a,b,c)[FΓ(a,b, c) 6= f(a,b, c)] = Pr(a,b,c)[f(a,ba, ca) 6= f(a,b, c)]

= Pr(a,b,c)[f(a,ba, c) 6= f(a,b, c)] [Since f does not depend on the variables in C]

=
1
2n

∑
a∈B|A|

∑
b∈B|B|

∑
c∈B|C|

1[f(a,ba,c) 6=f(a,b,c)] =
1
2n

∑
a∈B|A|

∑
s∈B|B|

∑
c∈B|C|

1[f(a,ba,c) 6=f(a,ba�s,c)]

(5.4.1)

Therefore if we consider the expected value of the incurred error Pr[FΓ 6= f] over all “lists of

assignments” Γ, equation (5.4.1) implies that:

EΓ[Pr(a,b,c)[FΓ 6= f]] =
1

2|B|
∑
s∈B|B|

 1
2n

∑
a∈B|A|

∑
ba∈B|B|

∑
c∈B|C|

1[f(a,ba�s,c) 6=f(a,ba,c)]


︸ ︷︷ ︸

<ε/10, due to Fact 5.4.6

< ε/10.

Consequently, the expected error of approximating f by a uniformly chosen FΓ is less than ε/10.

This also implies that for a uniformly chosen subset S of assignments to variables in A with size

(1 − ε/3)2|A|, the expected error over S satisfies: EΓ[Pr(a,b,c)
a∈S

[FΓ 6= f]] < ε/10. Therefore by

Markov’s Inequality, we obtain the following observation:

Observation 5.4.7. For a uniformly chosen subset S and FΓ as described above, FΓ will agree

with f on (1− ε/3) fraction of the coordinates {(a,b, c),a ∈ S} with probability at least 7/10.

Now if we go back and recall what the algorithm does in Stage 2, we will observe that the gen-

eration of the hypothesis in Stage 2 is equivalent to drawing a uniform FΓ and S as described and

resetting the values of FΓ at those coordinates {(a,b, c),a /∈ S} to TRUE. This is because the al-

gorithm only draws classical random examples during Stage 2. Therefore due to Observation 5.4.7,

110

the hypothesis will disagree with f on at most

1− (1− ε/3)2︸ ︷︷ ︸
The error incurred by (a,b, c),a ∈ S

+ ε/3︸︷︷︸
The error incurred by (a,b, c),a /∈ S

< ε

fraction of the inputs with overall probability at least 2/3. This gives the desired result.

Note that this algorithm offers the following benefits:

• is valid in the quantum PAC learning model, which is weaker than learning with QMQ

queries.

• has no dependence on n and thus goes beyond what is possible with classical MQ learning

due to the lower bound of Lemma 5.4.1.

• has access to limited quantum information – just O(poly(k)) quantum examples.

• has access to EX oracle as its only source of classical information – MQ queries are not

allowed.

Moreover, one can compare this result to that of Theorem 5.4.2 which requires Õ(n26kε−8) quan-

tum examples to learn k-juntas. In contrast, our algorithm uses not only substantially fewer quan-

tum examples but also fewer uniform random examples, which are considered quite cheap. Intu-

itively, this means that for the junta learning problem, almost all the quantum queries used by the

algorithm of Bshouty and Jackson [BJ99] can in fact be converted into ordinary classical random

examples.

Lower bounds

The algorithm of Theorem 5.4.5 is optimal in the following sense:

Observation 5.4.8. Any 1/10-learning quantum algorithm for k-juntas with 1
1202k random exam-

ples (or even classical MQ queries) requires Ω(2k) QMQ queries.

Proof. This statement easily follows from Fact 5.4.3 since a classical random example and a clas-

sical membership query can be simulated by a QMQ query.

111

In contrast to Observation 5.4.8, (for a constant value of ε) Algorithm 12 uses the same order

of random examples but about exponentially fewer quantum queries: O(k log k). In other words,

for sufficiently small values of ε if the allowed number of classical random examples are dropped

slightly from O(2k log ε−1) to 1
1202k then every quantum learning algorithm additionally requires

Ω(2k) queries even if it is allowed QMQ oracle access. Note that Algorithm 12 of Theorem 5.4.5

queries the uniform quantum example oracle, a weaker source of information than the quantum

membership oracle.

5.5 Learning polynomially sparse functions with a FS oracle and ran-

dom examples

We use a similar terminology to that of [KM93] for the concept class.

Definition 5.5.1 (See [KM93]).

• A function f : {−1, 1}n → R is said to be t-sparse if its Fourier spectrum contains only t

non-zero frequencies. Note that sparse functions in this definition do not have to be Boolean

valued.

• A function f : {−1, 1}n → {−1, 1} is said to be polynomially t(ε)-sparse if

– for every ε > 0 there exists a t(ε)-sparse function g : {−1, 1}n → R such that

Ex[(f(x)− g(x))2] ≤ ε; and

– t(ε) is a polynomial in ε−1 with coefficients possibly depending on n.

When we refer to an polynomially t(ε)-sparse function, it will be implicit that t is a polyno-

mial in ε−1 and we will simply write t instead of t(ε).

5.5.1 Known bounds on learning polynomially sparse functions

As shown by [KM93], some important and natural classes of functions such as decision trees and

functions with bounded L1 norm are polynomially sparse. Thus polynomially sparse functions are

of considerable interest from a learning theory perspective.

112

Algorithms that learn sparse functions using classical membership queries must make at least

Ω(n) queries:

Lemma 5.5.2. Any algorithm for learning t-sparse Boolean functions to accuracy ε = 1/10 with

classical membership queries must make Ω(n
√
t+ t) queries.

Proof. The Ω(t) lower bound follows from Observation 5.5.4 below.

For the Ω(n
√
t) lower bound, let r = 1

2 log t and let R = n − r. We consider the concept

class C of “junta selected parities;” these are functions where each setting of the first r variables

determines a parity function over the final R variables, whose value is the output of the function.

Formally, we have that

C = {f(x1, . . . , xr, y1, . . . , yR) : f(x1, . . . , xr, y1, . . . , yR) = χSx(y1, . . . , yR)}

so each f ∈ C is determined by a sequence of 2r parities {Sx}x∈{−1,1}r each of which may be an

arbitrary subset of {y1, . . . , yR}.

Note that each f ∈ C can be represented as a decision tree of depth r = 1
2 log t with a parity

function at each leaf. Each root-to-leaf path in such a decision tree contributes at most
√
t nonzero

terms to the Fourier representation of f , and there are
√
t leaves; thus every f ∈ C is t-sparse.

Let us consider the problem of learning one of the parity functions at a given fixed leaf of the

above described decision tree for f. Any two distinct parity functions agree on precisely half of

all inputs; if fewer than n − r membership queries have been made on inputs that reach that leaf,

then there will be at least two consistent parity functions which could be labeling the leaf, and no

hypothesis can have accuracy greater than 3/4 with probability exceeding 1/2. Hence in order to

learn a given function in C to accuracy 1− ε, the algorithm will require at least n− r membership

queries for at least (say) a 1−8ε fraction of all 2r =
√
tmany leaves of the tree. This gives a query

complexity of Ω((n− r)
√
t) for any successful algorithm.

Note that this lower bound has a linear dependence over n.

The following result due to Kushilevitz and Mansour gave the first polynomial time algorithm

for learning decision trees given classical membership queries:

113

Theorem 5.5.3 (See [KM93]). There is an efficient classical algorithm learning polynomially t-

sparse functions using O(poly(n, t, ε−1, log δ−1)) membership queries.

We have the following lower bound on learning sparse functions even when quantum member-

ship queries are allowed:

Observation 5.5.4. Any algorithm for learning t-sparse Boolean functions to accuracy ε = 1/10

with quantum membership queries must use Ω(t) queries.

This follows from Fact 5.4.3 and the easy observation that every (log t)-junta is a t-sparse

function.

The QEX based DNF learning algorithm of Bshouty and Jackson can also be used for learning

sparse functions.

Theorem 5.5.5 (Implicit in [BJ99]). There exists a ε-learning quantum algorithm for Boolean val-

ued t-sparse functions using Õ(n7t6ε−8) quantum examples under the uniform distribution quan-

tum PAC model.

Proof. Observe that by Cauchy-Schwarz inequality, any t-sparse function has an L1 norm of at

most
√
t. Now we can invoke a result due to [BS92] stating that any Boolean function over n

variables with L1 norm ` has a PTF of weight at most O(n`2). Moreover by [BJ99], we know any

PTF of weight W over n variables can be learned using Õ(nW 6ε−8) uniform quantum examples.

This gives the desired result.

5.5.2 A new learning algorithm

Our goal is to obtain a quantum algorithm which is not only more efficient but can also learn

polynomially sparse functions.

The following lemma which is a slightly modified version of [KM93, Lemma 3.1] will play an

important role in our derivations.

Lemma 5.5.6. If f : {−1, 1}n → {−1, 1} is a polynomially t-sparse function then for every ε > 0

there exists a function hε : {−1, 1}n → R such that

• hε(x) is t(ε2)-sparse,

114

• For every S ⊆ [n] such that ĥε(S) 6= 0, |ĥε(S)| > (2
ε t(

ε
2))−1/2 and ĥε(S) = f̂(S).

• Ex[(f(x)− hε(x))2] ≤ ε.

Proof. Since f is a polynomially t(ε)-sparse function, for every ε > 0 there exists a t(ε2)-sparse

function gε satisfying Ex[(f(x)− gε(x))2] ≤ ε/2. For any given ε, let’s fix the function gε.

Let Γ = {S : ĝε(S) 6= 0} and Γ′ = Γ∩{S : |f̂(S)| > (2
ε t(

ε
2))−1/2}. Clearly |Γ′| ≤ |Γ| ≤ t(ε2).

Define hε as follows:

hε(x) =
∑
S∈Γ′

f̂(S)χS(x).

hε(x) satisfies the first two properties by construction. Moreover by Parseval’s identity we have:

Ex[(f(x)− hε(x))2] =
∑
S/∈Γ

|f̂(S)|2 +
∑

S∈Γ\Γ′
|f̂(S)|2 ≤ ε/2 + |Γ \ Γ′|︸ ︷︷ ︸

≤t(ε
2
)

· max
S∈Γ\Γ′

|f̂(S)|2︸ ︷︷ ︸
≤(2

ε
t(ε

2
))−1

≤ ε.

The first term is at most ε/2 because the sum is over all the terms S in the spectrum which are

not in the support of gε and gε satisfies Ex[(f(x) − gε(x))2] ≤ ε/2. Observe that since for every

S ∈ Γ \ Γ′, |f̂(S)| ≤ (2
ε t(

ε
2))−1/2 and |Γ \ Γ′| ≤ t(ε2), the second term is also at most ε/2. This

gives the desired result.

Our learning algorithm is similar to the junta learning algorithm of Section 5.4 in the sense

that it works by first locating the heavy Fourier frequencies using FS oracle queries followed by

random examples and classical computation. However, in contrast to the junta learning algorithm

the algorithm uses classical random examples to approximate the heavy Fourier coefficients.

Our algorithm is based on the following lemma.

Lemma 5.5.7. Let f be a polynomially t-sparse function, and let hε(x) be the function defined in

Lemma 5.5.6. Then there is an algorithm that queries the FS oracle O(tε log t
ε) many times and

outputs a set S with |S| ≤ O(tε log t
ε) containing all nonzero Fourier frequencies of hε with high

probability.

Proof. Consider the algorithm that, given ε > 0 and access to FS(f), queries the FS(f) oracle N

times and outputs a list S of all FS oracle call results that are obtained.

115

Due to the second property of construction in Lemma 5.5.6 for every S ⊆ [n] such that ĥε(S) 6=

0, we have |ĥε(S)| > (2
ε t(

ε
2))−1/2 and ĥε(S) = f̂(S). Thus for any such fixed coefficient S,

the probability of not drawing S after N calls to the FS oracle is at most (1 − ε
2t(ε

2
))
N . This

probability can be made smaller than (10t(ε2))−1 for a sufficiently large choice of the constant c

where N = c t(ε/2)ε log t(ε/2)
ε . Since hε(x) is t(ε2)-sparse, the union bound gives the result.

Finally the following theorem gives the polynomially sparse function learning algorithm. As

earlier, our algorithm uses FS oracle queries and the rest of the computation is classical.

Theorem 5.5.8. There is an efficient algorithm that ε-learns any polynomially t-sparse function

using O(tε log t
ε) calls to the FS oracle and O(tε log t

ε) random examples.

Proof. We claim Algorithm 13 satisfies these requirements.

Algorithm 13 The polynomially sparse function learning algorithm.
1: Input: ε > 0,FS(f),EX(f).
2: Stage 1:
3: Construct a set containing all nonzero Fourier frequencies of hε/2 (as defined in Lemma 5.5.6)

using the algorithm in Lemma 5.5.7. Let S be the final result.
4: Stage 2:
5: for i = 0 to N = O(tε log t

ε) do
6: 〈xi, f(xi)〉 ← Draw from EX(f).
7: end for

8: For every S ∈ S, cS ←
1
N

N∑
j=1

f(xj)χS(xj) (Each cS approximates f̂(S) = ĥε/2(S)).

9: Output the hypothesis H(x) = sgn(
∑

S∈S cSχS).

Recall t(ε/4) = O(t(ε)) by the definition of a polynomially t-sparse function. In the first stage

the algorithm calculates with high probability all nonzero frequencies S of hε/4 using the algorithm

in Lemma 5.5.7. Thus O(tε log t
ε) queries of the FS oracle is made.

In the second stage for each S ∈ S, the algorithm attempts to approximate each ĥε/2(S) =

f̂(S) to within (4
ε t(

ε
4))−1/2. Thus the additive Chernoff bound shows using N = O(tε log t

ε)

random examples it is possible to approximate every ĥε/2(S) to the desired accuracy with high

probability.

116

Finally by virtue of the last property of the construction in Lemma 5.5.6,

Ex[(f(x)− hε/2(x))2] ≤ ε/2⇒ [By Parseval’s identity]
∑
S/∈S

|f̂(S)|2 ≤ ε/2, therefore

Ex[(f(x)− (
∑
S∈S

cSχS(x)))2] = [By Parseval’s identity]
∑
S/∈S

|f̂(S)|2︸ ︷︷ ︸
≤ε/2

+
∑
S∈S
|cS − f̂(S)|2︸ ︷︷ ︸

≤t(ε
4
)·(4

ε
t(ε

4
))−1

≤ ε

⇒[By Fact 5.2.3] Prx[f(x) 6= (H(x) = sgn(
∑
S∈S

cSχS))] ≤ ε.

This gives the desired result.

Note that this algorithm offers the following benefits:

• is valid in the quantum PAC learning model, which is weaker than learning with QMQ

queries.

• has no dependence on n and thus goes beyond what is possible with classical MQ learning

due to the lower bound of Lemma 5.5.2.

• is close to optimal considering the lower bound given by Observation 5.5.4.

• has access to EX oracle as its only source of classical information – MQ queries are not

allowed.

In contrast to the algorithm of Theorem 5.5.5, our algorithm uses substantially fewer quantum ex-

amples to learn Boolean valued sparse functions and can also learn polynomially sparse functions.

Chapter 6

Conclusions

We studied the capabilities and limitations of quantum algorithms for a wide variety of problems

under several different models. In particular, in Chapter 3 we considered the information theoretic

requirements of exact learning, partition learning and PAC learning of arbitrary concept classes; in

Chapter 4 we considered the problem of learning ω(log n) unions of high dimensional rectangles

efficiently in the case where both n and log b are viewed as “large”; and finally in Chapter 5 we

considered the problems of learning and testing juntas as well as learning polynomially sparse

functions.

We believe the following natural questions arising from our results offer promising directions

for future study (grouped with respect to the chapter of relevance):

Chapter 3: For the quantum exact learning model, is it possible to get rid of the log log |C| factor

in our algorithm’s upper bound and thus prove the conjecture of Hunziker et al. [HMP+03]

exactly? For the partitions problem, can we extend the range of partition sizes (as a func-

tion of |C|) for which there can be a superpolynomial separation between the quantum and

classical query complexity of learning the partition? Finally, for the PAC learning model, a

natural goal is to strengthen our Ω(
√
d
ε) lower bound on sample complexity to Ω(dε) and thus

match the lower bound of [EHKV89] for classical PAC learning.

Chapter 4: Besides the obvious goal of improving our positive results, it would be interesting to

explore the limitations of current techniques for learning unions of rectangles over [b]n. At

this point we can’t rule out the possibility that the GHS algorithm is in fact a poly(n, s, log b)

117

118

time algorithm for learning unions of s arbitrary rectangles over [b]n. Can evidence for or

against this possibility be given? For example, can one show that the representational power

of the hypotheses which the GHS algorithm produces (when run for poly(n, s, log b) many

stages) is – or is not – sufficient to express high-accuracy approximators to arbitrary unions

of s rectangles over [b]n?

Chapter 5: • Does there exist any o(k) junta testing algorithm using FS oracle queries?

• Is it possible to obtain a ω(poly(log k)) lower bound for quantum algorithms testing the

property of being a k-junta using quantum examples (or quantum membership queries)?

• Can we reduce the quantum query complexity of testing any further by allowing access

to classical random examples ?

• What are the implications of “having access to a FS oracle” for testing the property of

being a sparse function? More generally, what is the quantum complexity of testing

this property using QEX oracle or QMQ oracle?

Bibliography

[AB97] Martin Anthony and Norman Biggs, Computational learning theory, Cambridge
Tracts in Theoretical Computer Science, vol. 30, Cambridge University Press, Cam-
bridge, UK, 1997, An introduction, Corrected reprint of the 1992 original.

[ABK+98] Howard Aizenstein, Avrim Blum, Roni Khardon, Eyal Kushilevitz, Leonard Pitt, and
Dan Roth, On learning read-k-satisfy-j DNF, SIAM J. Comput. 27 (1998), no. 6,
1515–1530.

[AGS03] Adi Akavia, Shafi Goldwasser, and Samuel Safra, Proving hard-core predicates using
list decoding, FOCS ’03: Proc. of the 44th annual IEEE symposium on foundations of
computer science, IEEE Comput. Soc. Press, 2003, pp. 146–156.

[AIK+04a] Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Hiroyuki Masuda, Raymond H.
Putra, and Shigeru Yamashita, Quantum identification of Boolean oracles, Proc. of
STACS 2004, Lecture Notes in Comput. Sci., vol. 2996, Springer, Berlin, 2004,
pp. 105–116.

[AIK+04b] Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Rudy Raymond, and Shigeru Ya-
mashita, Robust quantum algorithms for oracle identification, arXiv e-print: quant-
ph/0411204, 2004.

[Ang88] Dana Angluin, Queries and concept learning, Mach. Learn. 2 (1988), no. 4, 319–342.

[AR03] Jan Arpe and Rüdiger Reischuk, Robust inference of relevant attributes, Algorithmic
learning theory, Lecture Notes in Comput. Sci., vol. 2842, Springer, Berlin, 2003,
pp. 99–113.

[AS05] Alp Atıcı and Rocco A. Servedio, Improved bounds on quantum learning algorithms,
Quantum Inf. Process. 4 (2005), no. 5, 355–386.

[AS06] Alp Atıcı and Rocco A. Servedio, Learning unions of ω(1)-dimensional rectangles,
Theoretical Computer Science special issue ALT 2006, to appear (2006), ALT ’06:
Proc. of the 17th international conference on algorithmic learning theory.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani,
Strengths and weaknesses of quantum computing, SIAM J. Comput. 26 (1997), no. 5,
1510–1523.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf,
Quantum lower bounds by polynomials, J. Assoc. Comput. Mach. 48 (2001), no. 4,
778–797.

119

120

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp, Tight bounds on quantum
searching, Fortschritte der Physik 46 (1998), 493–505.

[BCG+96] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino
Tamon, Oracles and queries that are sufficient for exact learning, J. Comput. System
Sci. 52 (1996), no. 3, 421–433, COLT ’94: Proc. of the 7th annual conference on
computational learning theory.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth,
Learnability and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach. 36
(1989), no. 4, 929–965.

[BFNR03] Harry Buhrman, Lance Fortnow, Ilan Newman, and Hein Röhrig, Quantum property
testing, Proc. of the 14th annual ACM-SIAM symposium on discrete algorithms, ACM
Press, 2003, pp. 480–488.

[BJ99] Nader H. Bshouty and Jeffrey C. Jackson, Learning DNF over the uniform distribution
using a quantum example oracle, SIAM J. Comput. 28 (1999), no. 3, 1136–1153.

[BK98] Amos Beimel and Eyal Kushilevitz, Learning boxes in high dimension, Algorithmica
22 (1998), no. 1-2, 76–90.

[Blu03] Avrim Blum, Learning a function of r relevant variables, COLT ’03: Proc. of the 16th
annual conference on computational learning theory, Springer Berlin / Heidelberg,
2003, pp. 731–733.

[Bru90] Jehoshua Bruck, Harmonic analysis of polynomial threshold functions, SIAM J. Dis-
crete Math. 3 (1990), no. 2, 168–177.

[BS92] Jehoshua Bruck and Roman Smolensky, Polynomial threshold functions, AC0 func-
tions, and spectral norms, SIAM J. Comput. 21 (1992), no. 1, 33–42.

[BV97] Ethan Bernstein and Umesh V. Vazirani, Quantum complexity theory, SIAM J. Com-
put. 26 (1997), no. 5, 1411–1473.

[CG04] Hana Chockler and Dan Gutfreund, A lower bound for testing juntas, Inform. Process.
Lett. 90 (2004), no. 6, 301–305.

[CH96] Zhixiang Chen and Steven Homer, The bounded injury priority method and the learn-
ability of unions of rectangles, Ann. Pure Appl. Logic 77 (1996), no. 2, 143–168.

[CM94] Zhixiang Chen and Wolfgang Maass, On-line learning of rectangles and unions of
rectangles, Mach. Learn. 17 (1994), no. 2-3, 201–223.

[Dam01] Ivan Damgård, QIP note: on the quantum Fourier transform and applications, 2001,
http://www.daimi.au.dk/˜ivan/fourier.pdf.

[Deu85] David Deutsch, Quantum theory, the Church-Turing principle and the universal quan-
tum computer, Proc. Roy. Soc. London Ser. A 400 (1985), no. 1818, 97–117.

[Deu89] David Deutsch, Quantum computational networks, Proc. Roy. Soc. London Ser. A 425
(1989), no. 1868, 73–90.

121

[DJ92] David Deutsch and Richard Jozsa, Rapid solution of problems by quantum computa-
tion, Proc. Roy. Soc. London Ser. A 439 (1992), no. 1907, 553–558.

[DN05] Christopher M. Dawson and Michael A. Nielsen, The Solovay-Kitaev algorithm, 2005,
arXiv e-print: quant-ph/0505030.

[EHKV89] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant, A general
lower bound on the number of examples needed for learning, Inform. and Comput. 82
(1989), no. 3, 247–261.

[Fey82] Richard P. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys. 21
(1981/82), no. 6-7, 467–488, Physics of computation, Part II (Dedham, Mass., 1981).

[FGGS98] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser, Limit on the
speed of quantum computation in determining parity, Phys. Rev. Lett. 81 (1998),
no. 24, 5442–5444.

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky, Test-
ing juntas, J. Comput. System Sci. 68 (2004), no. 4, 753–787.

[Fre95] Yoav Freund, Boosting a weak learning algorithm by majority, Inform. and Comput.
121 (1995), no. 2, 256–285.

[FS99] Yoav Freund and Robert E. Schapire, A short introduction to boosting, J. Japan. Soc.
for Artif. Intel. 14 (1999), no. 5, 771–780.

[Gav94] Ricard Gavaldà, The complexity of learning with queries, Structure in Complexity
Theory Conference, 1994, pp. 324–337.

[GGM94] Paul W. Goldberg, Sally A. Goldman, and H. David Mathias, Learning unions of
boxes with membership and equivalence queries, COLT ’94: Proc. of the 7th annual
conference on computational learning theory, ACM Press, 1994, pp. 198–207.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron, Property testing and its connection
to learning and approximation, J. Assoc. Comput. Mach. 45 (1998), no. 4, 653–750.

[Gol99] Sally A. Goldman, Computational learning theory, Algorithms and theory of compu-
tation handbook, CRC Press, Boca Raton, FL, 1999.

[Gro96] Lov K. Grover, A fast quantum mechanical algorithm for database search, STOC ’96:
Proc. of the 28th annual ACM symposium on the theory of computing, ACM Press,
1996, pp. 212–219.

[Heg95] Tibor Hegedűs, Generalized teaching dimensions and the query complexity of learn-
ing, COLT ’95: Proc. of the 8th annual conference on computational learning theory,
ACM Press, 1995, pp. 108–117.

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán,
Threshold circuits of bounded depth, J. Comput. System Sci. 46 (1993), no. 2, 129–
154.

[HMP+03] Markus Hunziker, David A. Meyer, Jihun Park, James Pommersheim, and Mitch Roth-
stein, The geometry of quantum learning, arXiv e-print: quant-ph/0309059, 2003.

122

[HPRW96] Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan, and Dawn Wilkins,
How many queries are needed to learn?, J. Assoc. Comput. Mach. 43 (1996), no. 5,
840–862.

[Jac97] Jeffrey C. Jackson, An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution, J. Comput. System Sci. 55 (1997), no. 3, 414–440,
FOCS ’94: Proc. of the 35th annual IEEE symposium on foundations of computer
science.

[JKS02] Jeffrey C. Jackson, Adam R. Klivans, and Rocco A. Servedio, Learnability beyond
AC0, STOC ’02: Proc. of the 34th annual ACM symposium on theory of computing,
ACM Press, 2002, pp. 776–784.

[Kha94] Roni Khardon, On using the Fourier transform to learn disjoint DNF, Inf. Process.
Lett. 49 (1994), no. 5, 219–222.

[Kit97] Alexei Yu. Kitaev, Quantum computations: algorithms and error correction, Russ.
Math. Surv. 52 (1997), no. 6, 1191–1249.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial, The influence of variables on Boolean func-
tions, FOCS ’88: Proc. of the 29th annual IEEE symposium on foundations of com-
puter science, IEEE Comput. Soc. Press, 1988, pp. 68–80.

[KM93] Eyal Kushilevitz and Yishay Mansour, Learning decision trees using the Fourier spec-
trum, SIAM J. Comput. 22 (1993), no. 6, 1331–1348.

[KP98] Matthias Krause and Pavel Pudlák, Computing Boolean functions by polynomials and
threshold circuits, Comput. Complexity 7 (1998), no. 4, 346–370.

[KS04] Adam R. Klivans and Rocco A. Servedio, Learning DNF in time 2Õ(n1/3), J. Comput.
System Sci. 68 (2004), no. 2, 303–318.

[KSV02] Alexei Yu. Kitaev, Alexander H. Shen, and Mikhail N. Vyalyi, Classical and quan-
tum computation, Graduate Studies in Mathematics, vol. 47, American Mathematical
Society, Providence, RI, 2002, Translated from the 1999 Russian original by Lester J.
Senechal.

[KV94] Michael J. Kearns and Umesh V. Vazirani, An introduction to computational learning
theory, MIT Press, Cambridge, MA, 1994.

[MOS04] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio, Learning functions of k
relevant variables, J. Comput. System Sci. 69 (2004), no. 3, 421–434.

[MW98] Wolfgang Maass and Manfred K. Warmuth, Efficient learning with virtual threshold
gates, Inform. and Comput. 141 (1998), no. 1, 66–83.

[MZ03] Michele Mosca and Christof Zalka, Exact quantum Fourier transforms and discrete
logarithm algorithms, arXiv e-print: quant-ph/0301093, 2003.

[NC00] Michael A. Nielsen and Isaac L. Chuang, Quantum computation and quantum infor-
mation, Cambridge University Press, Cambridge, UK, 2000.

[OS03] Ryan O’Donnell and Rocco A. Servedio, Extremal properties of polynomial threshold
functions, CCC ’03: Eighteenth annual IEEE conference on computational complex-
ity, IEEE Computer Society, 2003, pp. 3–12.

[Pis81] Gilles Pisier, Remarques sur un résultat non publié de B. Maurey, Séminaire
d’Analyse Fonctionnelle, vol. 1, École Polytechnique, Palaiseau, 1981, pp. 1980–
1981.

[RS96] Ronitt Rubinfeld and Madhu Sudan, Robust characterizations of polynomials with
applications to program testing, SIAM J. Comput. 25 (1996), no. 2, 252–271.

[Sch90] Robert E. Schapire, The strength of weak learnability, Mach. Learn. 5 (1990), no. 2,
197–227.

[SG04] Rocco A. Servedio and Steven J. Gortler, Equivalences and separations between quan-
tum and classical learnability, SIAM J. Comput. 33 (2004), no. 5, 1067–1092.

[Shi00] Yaoyun Shi, Lower bounds of quantum black-box complexity and degree of approx-
imating polynomials by influence of Boolean variables, Inform. Process. Lett. 75
(2000), no. 1-2, 79–83.

[Sho94] Peter W. Shor, Algorithms for quantum computation: discrete logarithms and factor-
ing, FOCS ’94: Proc. of the 35th annual IEEE symposium on foundations of computer
science, IEEE Comput. Soc. Press, 1994, pp. 124–134.

[Sho97] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM J. Comput. 26 (1997), no. 5, 1484–1509.

[Sim97] Daniel R. Simon, On the power of quantum computation, SIAM J. Comput. 26 (1997),
no. 5, 1474–1483.

[Val84] Leslie G. Valiant, A theory of the learnable, Commun. Assoc. Comput. Mach. 27
(1984), no. 11, 1134–1142.

[Vap98] Vladimir N. Vapnik, Statistical learning theory, Adaptive and Learning Systems for
Signal Processing, Communications, and Control, John Wiley & Sons Inc., New York,
1998, A Wiley-Interscience Publication.

[vD98] Wim van Dam, Quantum oracle interrogation: getting all information for almost half
the price, FOCS ’98: Proc. of the 39th annual IEEE symposium on foundations of
computer science, IEEE Comput. Soc. Press, 1998, pp. 362–367.

[Yao93] Andrew Chi-Chih Yao, Quantum circuit complexity, FOCS ’93: Proc. of the 34th
annual IEEE symposium on foundations of computer science, IEEE Comput. Soc.
Press, 1993, pp. 352–361.

123

